484 resultados para science learning
Resumo:
This paper presents a novel program annotation mechanism which enables students to obtain feedback from tutors on their programs in a far simpler and more efficient way than is possible with, for example, email. A common scenario with beginning students is to email tutors with copies of their malfunctioning programs. Unfortunately the emailed program often bears little resemblance to the program the student has been trying to make work; often it is incomplete, a different version and corrupted. We propose an annotation mechanism enabling students to simply and easily annotate their programs with comments asking for help. Similarly our mechanism enables tutors to view students’ programs and to reply to their comments in a simple and structured fashion. This means students can get frequent and timely feedback on their programs; tutors can provide such feedback efficiently, and hence students’ learning is greatly improved.
Resumo:
There exists a general consensus in the science education literature around the goal of enhancing students. and teachers. views of nature of science (NOS). An emerging area of research in science education explores NOS and argumentation, and the aim of this study was to explore the effectiveness of a science content course incorporating explicit NOS and argumentation instruction on preservice primary teachers. views of NOS. A constructivist perspective guided the study, and the research strategy employed was case study research. Five preservice primary teachers were selected for intensive investigation in the study, which incorporated explicit NOS and argumentation instruction, and utilised scientific and socioscientific contexts for argumentation to provide opportunities for participants to apply their NOS understandings to their arguments. Four primary sources of data were used to provide evidence for the interpretations, recommendations, and implications that emerged from the study. These data sources included questionnaires and surveys, interviews, audio- and video-taped class sessions, and written artefacts. Data analysis involved the formation of various assertions that informed the major findings of the study, and a variety of validity and ethical protocols were considered during the analysis to ensure the findings and interpretations emerging from the data were valid. Results indicated that the science content course was effective in enabling four of the five participants. views of NOS to be changed. All of the participants expressed predominantly limited views of the majority of the examined NOS aspects at the commencement of the study. Many positive changes were evident at the end of the study with four of the five participants expressing partially informed and/or informed views of the majority of the examined NOS aspects. A critical analysis of the effectiveness of the various course components designed to facilitate the development of participants‟ views of NOS in the study, led to the identification of three factors that mediated the development of participants‟ NOS views: (a) contextual factors (including context of argumentation, and mode of argumentation), (b) task-specific factors (including argumentation scaffolds, epistemological probes, and consideration of alternative data and explanations), and (c) personal factors (including perceived previous knowledge about NOS, appreciation of the importance and utility value of NOS, and durability and persistence of pre-existing beliefs). A consideration of the above factors informs recommendations for future studies that seek to incorporate explicit NOS and argumentation instruction as a context for learning about NOS.
Resumo:
In architecture courses, instilling a wider understanding of the industry specific representations practiced in the Building Industry is normally done under the auspices of Technology and Science subjects. Traditionally, building industry professionals communicated their design intentions using industry specific representations. Originally these mainly two dimensional representations such as plans, sections, elevations, schedules, etc. were produced manually, using a drawing board. Currently, this manual process has been digitised in the form of Computer Aided Design and Drafting (CADD) or ubiquitously simply CAD. While CAD has significant productivity and accuracy advantages over the earlier manual method, it still only produces industry specific representations of the design intent. Essentially, CAD is a digital version of the drawing board. The tool used for the production of these representations in industry is still mainly CAD. This is also the approach taken in most traditional university courses and mirrors the reality of the situation in the building industry. A successor to CAD, in the form of Building Information Modelling (BIM), is presently evolving in the Construction Industry. CAD is mostly a technical tool that conforms to existing industry practices. BIM on the other hand is revolutionary both as a technical tool and as an industry practice. Rather than producing representations of design intent, BIM produces an exact Virtual Prototype of any building that in an ideal situation is centrally stored and freely exchanged between the project team. Essentially, BIM builds any building twice: once in the virtual world, where any faults are resolved, and finally, in the real world. There is, however, no established model for learning through the use of this technology in Architecture courses. Queensland University of Technology (QUT), a tertiary institution that maintains close links with industry, recognises the importance of equipping their graduates with skills that are relevant to industry. BIM skills are currently in increasing demand throughout the construction industry through the evolution of construction industry practices. As such, during the second half of 2008, QUT 4th year architectural students were formally introduced for the first time to BIM, as both a technology and as an industry practice. This paper will outline the teaching team’s experiences and methodologies in offering a BIM unit (Architectural Technology and Science IV) at QUT for the first time and provide a description of the learning model. The paper will present the results of a survey on the learners’ perspectives of both BIM and their learning experiences as they learn about and through this technology.
Resumo:
This paper deals with the problem of using the data mining models in a real-world situation where the user can not provide all the inputs with which the predictive model is built. A learning system framework, Query Based Learning System (QBLS), is developed for improving the performance of the predictive models in practice where not all inputs are available for querying to the system. The automatic feature selection algorithm called Query Based Feature Selection (QBFS) is developed for selecting features to obtain a balance between the relative minimum subset of features and the relative maximum classification accuracy. Performance of the QBLS system and the QBFS algorithm is successfully demonstrated with a real-world application
Resumo:
Learning a digital tool is often a hidden process. We tend to learn new tools in a bewildering range of ways. Formal, informal, structured, random, conscious, unconscious, individual, group strategies, may all play a part, but are often lost to us in the complex and demanding processes of learning. But when we reflect carefully on the experience, some patterns and surprising techniques emerge. This monograph presents the thinking of seven students in MDN642, Digital Pedagogies, where they have deliberately reflected on the mental processes at work as they learnt a digital technology of their choice.
Resumo:
There are currently a number of issues of great importance affecting universities and the way in which their programs are now offered. Many issues are largely being driven top-down and impact both at a university-wide and at an individual discipline level. This paper provides a brief history of cartography and digital mapping education at the Queensland University of Technology (QUT). It also provides an overview of what is curriculum mapping and presents some interesting findings from the program review process. Further, this review process has triggered discussion and action for the review, mapping and embedding of graduate attributes within the spatial science major program. Some form of practical based learning is expected in vocationally oriented degrees that lead to professional accreditation and are generally regarded as a good learning exposure. With the restructure of academic programs across the Faculty of Built Environment and Engineering in 2006, spatial science and surveying students now undertake a formal work integrated learning unit. There is little doubt that students acquire the skills of their discipline (mapping science, spatial) by being immersed in the industry culture- learning how to process information and solve real-world problems within context. The broad theme of where geo-spatial mapping skills are embedded in this broad-based tertiary education course are examined with some focused discussion on the learning objectives, outcomes and examples of some student learning experiences
Resumo:
This paper provides an overview of the current QUT Spatial Science undergraduate program based in Brisbane, Queensland, Australia. It discusses the development and implementation of a broad-based educational model for the faculty of built environment and engineering courses and specifically to the course structure of the new Bachelor of Urban Development (Spatial Science) study major. A brief historical background of surveying courses is discussed prior to the detailing of the three distinct and complementary learning themes of the new course structure with a graphical course matrix. Curriculum mapping of the spatial science major has been undertaken as the course approaches formal review in late 2010. Work-integrated learning opportunities have been embedded into the curriculum and a brief outline is presented. Some issues relevant to the tertiary surveying/ spatial sector are highlighted in the context of changing higher education environments in Australia.
Resumo:
The implementation of effective science programmes in primary schools is of continuing interest and concern for professional developers. As part of the Australian Academy of Science's approach to creating an awareness of Primary Investigations, a project team trialled a series of satellite television broadcasts of lessons related to two units of the curriculum for Year 3 and 4 children in 48 participating schools. The professional development project entitled Simply Science, included a focused component for the respective classroom teachers, which was also conducted by satellite. This paper reports the involvement of a Year 4 teacher in the project and describes her professional growth. Already an experienced and confident teacher, no quantitative changes in science teaching self efficacy were detected. However, her pedagogical content knowledge and confidence to teach science in the concept areas of matter and energy were enhanced. Changes in the teacher's views about the co-operative learning strategies espoused by Primary Investigations were also evident. Implications for the design of professional development programmes for primary science teachers are discussed.
Resumo:
To date, automatic recognition of semantic information such as salient objects and mid-level concepts from images is a challenging task. Since real-world objects tend to exist in a context within their environment, the computer vision researchers have increasingly incorporated contextual information for improving object recognition. In this paper, we present a method to build a visual contextual ontology from salient objects descriptions for image annotation. The ontologies include not only partOf/kindOf relations, but also spatial and co-occurrence relations. A two-step image annotation algorithm is also proposed based on ontology relations and probabilistic inference. Different from most of the existing work, we specially exploit how to combine representation of ontology, contextual knowledge and probabilistic inference. The experiments show that image annotation results are improved in the LabelMe dataset.
Resumo:
The PISA assessment instruments for students’ scientific literacy in 2000, 2003 and 2006 have each consisted of units made up of a real world context involving Science and Technology, about which students are asked a number of cognitive and affective questions. This paper discusses a number of issues from this use of S&T contexts in PISA and the implications they have for the current renewed interest in context-based science education. Suitably chosen contexts can engage both boys and girls. Secondary analyses of the students’ responses using the contextual sets of items as the unit of analysis provides new information about the levels of performance in PISA 2006 Science. .Embedding affective items in the achievement test did not lead to gender/context interactions of significance, and context interactions were less than competency ones. A number of implications for context-based science teaching and learning are outlined and the PISA 2006 Science test is suggested as a model for its assessment.
Resumo:
Policy has been a much neglected area for research in science education. In their neglect of policy studies, researchers have maintained an ongoing naivete about the politics of science education. In doing so, they often overestimate the implications of their research findings about practice and ignore the interplay between the stakeholders beyond and in-school who determine the nature of the curriculum for science education and its enacted character. Policies for education (and science education in particular) always involve authority and values, both of which raise sets of fascinating questions for research. The location of authority for science education differs across educational systems in ways that affect the role teachers are expected to play. Policies very often value some groups in society over others, as the long history of attempts to provide science for all students testifies. As research on teaching/learning science identifies pedagogies that have widespread effectiveness, the policy issue of mandating these becomes important. Illustrations of successful policy to practice suggest that establishing conditions that will facilitate the intended implementation is critically important. The responsibility of researchers for critiquing and establishing policy for improving the practice of science education is discussed, together with the role research associations could play if they are to claim their place as key stakeholders in science education.