254 resultados para preliminary discovery


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article argues that Chinese traditional values do matter in Chinese corporate governance. The object is to report on the preliminary findings of a project supported by the General Research Fund in Hong Kong (HK). Thus far the survey results from HK respondents support the authors’ hypothesis. As such, traditional Chinese values should be on the agenda of the next round of company law reforms in China

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wireless Mobility Usage: A Preliminary Qualitative Study for Management in Two Australian University Settings, Neville Meyers, Heather Gray, Greg Hearn, Louis Sanzogni, and Sandra Lawrence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A hierarchical structure is used to represent the content of the semi-structured documents such as XML and XHTML. The traditional Vector Space Model (VSM) is not sufficient to represent both the structure and the content of such web documents. Hence in this paper, we introduce a novel method of representing the XML documents in Tensor Space Model (TSM) and then utilize it for clustering. Empirical analysis shows that the proposed method is scalable for a real-life dataset as well as the factorized matrices produced from the proposed method helps to improve the quality of clusters due to the enriched document representation with both the structure and the content information.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to the change in attitudes and lifestyles, people expect to find new partners and friends via various ways now-a-days. Online dating networks create a network for people to meet each other and allow making contact with different objectives of developing a personal, romantic or sexual relationship. Due to the higher expectation of users, online matching companies are trying to adopt recommender systems. However, the existing recommendation techniques such as content-based, collaborative filtering or hybrid techniques focus on users explicit contact behaviors but ignore the implicit relationship among users in the network. This paper proposes a social matching system that uses past relations and user similarities in finding potential matches. The proposed system is evaluated on the dataset collected from an online dating network. Empirical analysis shows that the recommendation success rate has increased to 31% as compared to the baseline success rate of 19%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scoliosis is a spinal deformity that requires surgical correction in progressive cases. In order to optimize surgical outcomes, patient-specific finite element models are being developed by our group. In this paper, a single rod anterior correction procedure is simulated for a group of six scoliosis patients. For each patient, personalised model geometry was derived from low-dose CT scans, and clinically measured intra-operative corrective forces were applied. However, tissue material properties were not patient-specific, being derived from existing literature. Clinically, the patient group had a mean initial Cobb angle of 47.3 degrees, which was corrected to 17.5 degrees after surgery. The mean simulated post-operative Cobb angle for the group was 18.1 degrees. Although this represents good agreement between clinical and simulated corrections, the discrepancy between clinical and simulated Cobb angle for individual patients varied between -10.3 and +8.6 degrees, with only three of the six patients matching the clinical result to within accepted Cobb measurement error of +-5 degrees. The results of this study suggest that spinal tissue material properties play an important role in governing the correction obtained during surgery, and that patient-specific modelling approaches must address the question of how to prescribe patient-specific soft tissue properties for spine surgery simulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This Preliminary Report has been prepared by researchers at The Australian Expert Group in Industry Studies (AEGIS) for the Commonwealth Department of Industry, Science and Resources. It is intended to provide a preliminary 'product system map' of the building and construction industries which defines the system, identifies the major segments, describes key industry players and institutions and provides the basis for exploring relationships, innovation and information flows within the industries. This Preliminary Report is the first of a series of five which will explore the building and construction product system in some depth. This first report does not present original research, although it does include some new interview data and analysis of a variety of written sources. This report is rather a reformulation of existing statistical and analytical material from a product system-based perspective. It is intended to provide the basis for subsequent studies by putting what is already known into an alternative framework and allowing us to see it through a new lens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It could be said that road congestion is one of the most significant problems within any modern metropolitan area. For several decades now, around the globe, congestion in metropolitan areas has been worsening for two main reasons. Firstly, road congestion has significantly increased due to a higher demand for road space because of growth in populations, economic activity and incomes (Hensher & Puckett, 2007). This factor, in conjunction with a significant lack of investment in new road and public transport infrastructure, has seen the road network capacities of cities exceeded by traffic volumes and thus, resulted in increased traffic congestion. This relentless increase in road traffic congestion has resulted in a dramatic increase in costs for both the road users and ultimately the metropolitan areas concerned (Bureau of Transport and Regional Economics, 2007). In response to this issue, several major cities around the world, including London, Stockholm and Singapore, have implemented congestion-charging schemes in order to combat the effects of road congestion. A congestion-charging scheme provides a mechanism for regulating traffic flows into the congested areas of a city, whilst simultaneously generating public revenue that can be used to improve both the public transport and road networks of the region. The aim of this paper was to assess the concept of congestion-charging, whilst reflecting on the experiences of various cities that have already implemented such systems. The findings from this paper have been used to inform the design of a congestion-charging scheme for the city of Brisbane in Australia in a supplementary study (Whitehead, Bunker, & Chung, 2011). The first section of this paper examines the background to road congestion; the theory behind different congestion-charging schemes; and the various technologies involved with the concept. The second section of this paper details the experiences, in relation to implementing a congestion-charging scheme, from the city of Stockholm in Sweden. This research has been crucial in forming a list of recommendations and lessons learnt for the design of a congestion-charging scheme in Australia. It is these recommendations that directly inform the proposed design of the Brisbane Cordon Scheme detailed in Whitehead et al. (2011).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent research has begun to address and even compare nascent entrepreneurship and nascent corporate entrepreneurship. An opportunity based view holds great potential to integrate both streams of research, but also presents challenges in how we define corporate entrepreneurship. We extend (corporate) entrepreneurship literature to the opportunity identification phase by providing a framework to classify different types of corporate entrepreneurship. Through analysis of a large dataset on nascent (corporate) entrepreneurship (PSEDII) we show that these corporate entrepreneurs differ largely from each other in terms of human capital. Prior studies have indicated that independent and corporate entrepreneurs pursue different types of opportunities and utilize different strategies. Our findings from the opportunity identification phase challenge those differences and seem to indicate a difference between the opportunities corporate entrepreneurs identify versus the opportunities they exploit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper details the development of, and perceived role and effectiveness of an innovative intervention designed to ultimately improve the safety of a group of community care (CC) nurses while driving. Recruiting participants from an Australian CC nursing car fleet, qualitative responses from a series of open-ended questions were obtained from drivers (n = 36), supervisors (n = 22), and managers (n = 6). The findings supported the effectiveness of the intervention in reducing self-reported speeding and promoting greater insight into one’s behaviour on the road. This research has important practical implications in that it highlights the value of developing an intervention based on a sound theoretical framework and which is aligned with the needs and beliefs of personnel within a particular organisation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In today’s electronic world vast amounts of knowledge is stored within many datasets and databases. Often the default format of this data means that the knowledge within is not immediately accessible, but rather has to be mined and extracted. This requires automated tools and they need to be effective and efficient. Association rule mining is one approach to obtaining knowledge stored with datasets / databases which includes frequent patterns and association rules between the items / attributes of a dataset with varying levels of strength. However, this is also association rule mining’s downside; the number of rules that can be found is usually very big. In order to effectively use the association rules (and the knowledge within) the number of rules needs to be kept manageable, thus it is necessary to have a method to reduce the number of association rules. However, we do not want to lose knowledge through this process. Thus the idea of non-redundant association rule mining was born. A second issue with association rule mining is determining which ones are interesting. The standard approach has been to use support and confidence. But they have their limitations. Approaches which use information about the dataset’s structure to measure association rules are limited, but could yield useful association rules if tapped. Finally, while it is important to be able to get interesting association rules from a dataset in a manageable size, it is equally as important to be able to apply them in a practical way, where the knowledge they contain can be taken advantage of. Association rules show items / attributes that appear together frequently. Recommendation systems also look at patterns and items / attributes that occur together frequently in order to make a recommendation to a person. It should therefore be possible to bring the two together. In this thesis we look at these three issues and propose approaches to help. For discovering non-redundant rules we propose enhanced approaches to rule mining in multi-level datasets that will allow hierarchically redundant association rules to be identified and removed, without information loss. When it comes to discovering interesting association rules based on the dataset’s structure we propose three measures for use in multi-level datasets. Lastly, we propose and demonstrate an approach that allows for association rules to be practically and effectively used in a recommender system, while at the same time improving the recommender system’s performance. This especially becomes evident when looking at the user cold-start problem for a recommender system. In fact our proposal helps to solve this serious problem facing recommender systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many data mining techniques have been proposed for mining useful patterns in text documents. However, how to effectively use and update discovered patterns is still an open research issue, especially in the domain of text mining. Since most existing text mining methods adopted term-based approaches, they all suffer from the problems of polysemy and synonymy. Over the years, people have often held the hypothesis that pattern (or phrase) based approaches should perform better than the term-based ones, but many experiments did not support this hypothesis. This paper presents an innovative technique, effective pattern discovery which includes the processes of pattern deploying and pattern evolving, to improve the effectiveness of using and updating discovered patterns for finding relevant and interesting information. Substantial experiments on RCV1 data collection and TREC topics demonstrate that the proposed solution achieves encouraging performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study examined the effect that temporal order within the entrepreneurial discovery-exploitation process has on the outcomes of venture creation. Consistent with sequential theories of discovery-exploitation, the general flow of venture creation was found to be directed from discovery toward exploitation in a random sample of nascent ventures. However, venture creation attempts which specifically follow this sequence derive poor outcomes. Moreover, simultaneous discovery-exploitation was the most prevalent temporal order observed, and venture attempts that proceed in this manner more likely become operational. These findings suggest that venture creation is a multi-scale phenomenon that is at once directional in time, and simultaneously driven by symbiotically coupled discovery and exploitation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is a big challenge to guarantee the quality of discovered relevance features in text documents for describing user preferences because of the large number of terms, patterns, and noise. Most existing popular text mining and classification methods have adopted term-based approaches. However, they have all suffered from the problems of polysemy and synonymy. Over the years, people have often held the hypothesis that pattern-based methods should perform better than term-based ones in describing user preferences, but many experiments do not support this hypothesis. The innovative technique presented in paper makes a breakthrough for this difficulty. This technique discovers both positive and negative patterns in text documents as higher level features in order to accurately weight low-level features (terms) based on their specificity and their distributions in the higher level features. Substantial experiments using this technique on Reuters Corpus Volume 1 and TREC topics show that the proposed approach significantly outperforms both the state-of-the-art term-based methods underpinned by Okapi BM25, Rocchio or Support Vector Machine and pattern based methods on precision, recall and F measures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Regardless of technology benefits, safety planners still face difficulties explaining errors related to the use of different technologies and evaluating how the errors impact the performance of safety decision making. This paper presents a preliminary error impact analysis testbed to model object identification and tracking errors caused by image-based devices and algorithms and to analyze the impact of the errors for spatial safety assessment of earthmoving and surface mining activities. More specifically, this research designed a testbed to model workspaces for earthmoving operations, to simulate safety-related violations, and to apply different object identification and tracking errors on the data collected and processed for spatial safety assessment. Three different cases were analyzed based on actual earthmoving operations conducted at a limestone quarry. Using the testbed, the impacts of the errors were investigated for the safety planning purpose.