124 resultados para Water-gas shift reaction


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we report the development of a novel Pt/MoO3 nano-flower/SiC Schottky diode based device for hydrogen gas sensing applications. The MoO3 nanostructured thin films were deposited on SiC substrates via thermal evaporation. Morphological characterization of the nanostructured MoO3 by scanning electron microscopy revealed randomly orientated thin nanoplatelets in a densely packed formation of nano-flowers with dimensions ranging from 250 nm to 1 μm. Current-voltage characteristics of the sensor were measured at temperatures from 25°C to 250°C. The sensor showed greater sensitivity in a reverse bias condition than in forward bias. Dynamic response of the sensor was investigated towards different concentrations of hydrogen gas in a synthetic air mixture at 250°C and a large voltage shift of 5.7 V was recorded upon exposure to 1% hydrogen.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we present gas sensing properties of Pt/graphene-like nano-sheets towards hydrogen gas. The graphene-like nano-sheets were produced via the reduction of spray-coated graphite oxide deposited on SiC substrates by hydrazine vapor. Structural and morphological characterizations of the graphene sheets were analyzed by scanning electron and atomic force microscopy. Current-voltage and dynamic responses of the sensors were investigated towards different concentrations of hydrogen gas in a synthetic air mixture at 100°C. A voltage shift of 100 mV was recorded at 1 mA reverse bias current.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Zinc oxide (ZnO) is one of the most promising electronic and photonic materials to date. In this work, we present an enhanced ZnO Schottky gas sensor deposited on SiC substrates in comparison to those reported previously in literature. The performance of ZnO/SiC based Schottky thin film gas sensors produced a forward lateral voltage shift of 12.99mV and 111.87mV in response to concentrations of hydrogen gas at 0.06% and 1% in air at optimum temperature of 330 ºC. The maximum change in barrier height was calculated as 37.9 meV for 1% H2 sensing operation at the optimum temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thin films consisting of graphene-like nano-sheets were deposited onto LiTaO3 surface acoustic wave transducers. A thickness of less than 10 nm and the existence of C-C bond were observed during the characterization of graphene-like nano-sheets. Frequency shift of 18.7 kHz and 14.9 kHz towards 8.5 ppm NO2 at two different operating temperature, 40°C and 25°C, respectively, was observed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pt/SnO2 nanowires/SiC based metal-oxidesemiconductor (MOS) devices were fabricated and tested for their gas sensitivity towards hydrogen. Tin oxide (SnO2) nanowires were grown on SiC substrates by the vapour liquid solid growth process. The material properties of the SnO2 nanowires such as its formation and dimensions were analyzed using scanning electron microscopy (SEM). The currentvoltage (I-V) characteristics at different hydrogen concentrations are presented. The effective change in the barrier height for 0.06 and 1% hydrogen were found to be 20.78 and 131.59 meV, respectively. A voltage shift of 310 mV at 530°C for 1% hydrogen was measured.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The interaction of water with the fluorine-covered (001) surface of anatase titanium dioxide (TiO2) has been studied within the framework of density functional theory (DFT). Our results show that water dissociation is unfavorable due to repulsive interactions between surface fluorine and oxygen. We also found that the reaction of hydrofluoric acid with a surface hydroxyl group to form a surface Ti–F bond is exothermic, while the removal of fluorine from the surface needs additional energy of about half an eV. Therefore, water molecules are predicted to remain intact at the interface with the F-terminated anatase (001).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a methodology for determining the vertical hydraulic conductivity (Kv) of an aquitard, in a multilayered leaky system, based on the harmonic analysis of arbitrary water-level fluctuations in aquifers. As a result, Kv of the aquitard is expressed as a function of the phase-shift of water-level signals measured in the two adjacent aquifers. Based on this expression, we propose a robust method to calculate Kv by employing linear regression analysis of logarithm transformed frequencies and phases. The frequencies, where the Kv are calculated, are identified by coherence analysis. The proposed methods are validated by a synthetic case study and are then applied to the Westbourne and Birkhead aquitards, which form part of a five-layered leaky system in the Eromanga Basin, Australia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carbon dioxide reforming of methane produces synthesis gas with a low hydrogen to carbon monoxide ratio, which is desirable for many industrial synthesis processes. This reaction also has very important environmental implications since both methane and carbon dioxide contribute to the greenhouse effect. Converting these gases into a valuable feedstock may significantly reduce the atmospheric emissions of CO2 and CH4. In this paper, we present a comprehensive review on the thermodynamics, catalyst selection and activity, reaction mechanism, and kinetics of this important reaction. Recently, research has centered on the development of catalysts and the feasible applications of this reaction in industry. Group VIII metals supported on oxides are found to be effective for this reason. However, carbon deposition causing catalyst deactivation is the major problem inhibiting the industrial application of the CO2/CH4 reaction. Ni-based catalysts impregnated on certain supports show carbon-free operation and thus attract much attention. To develop an effective catalyst for CO2 reforming of CH4 and accelerate the commercial application of the reaction, the following are identified to be the most important areas for future work: (1) selection of metal and support and studying the effect of their interaction on catalyst activity; (2) the effect of different promoter on catalyst activity; (3) the reaction mechanism and kinetics; and (4) pilot reactor performance and scale-up operation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Raman and Fourier transform infrared (FT-IR) spectroscopy have been applied to a systematic investigation of the adsorption and decomposition of dichlorodifluoromethane (CCl2F2, CFC-12), fluorotrichloromethane (CCl3F, CFC-11), chlorodifluoromethane (CHClF2, HCFC-22) and molecular chlorine on oxide surfaces. Additionally, the effects of heating and ultraviolet photolysis of the CFC and HCFCs adsorbed on the oxide surfaces have been investigated. Spectral features for these species indicated a small wavenumber shift (1-6 cm-1) associated with the adsorbed phase. Some evidence, specifically the appearance of the Raman band at 507 cm-1, is presented to show that chlorine decomposition species are associated with these oxide surfaces. It was concluded that the new spectral feature (at ca. 507 cm-1) related with the decomposition of the CFC and HCFC molecules was an important indicator of the extent to which the reaction between the adsorbed CFC and HCFC and oxide surface has taken place. The extent of CFC-surface interaction has been quantified in terms of a maximum (Raman) frequency shift parameter (AM). Wavenumber shifts suggest both cation-adsorbate and non-specific adsorption interactions are occurring in the internal channels of the zeolites. Slow decomposition of the adsorbed CFCs under ultraviolet-visible photolysis (at ? > 300 nm) and/or thermal treatment was observed spectroscopically. Using FT-IR spectroscopy, the formation of gas-phase products (CO, CO2, HCl) both onyn photolysis and heating was evident. Results of these measurements are compared with the observed atmospheric reactivity of these compounds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This project is a passionate and sometimes enraged thrust toward a biodiverse future. Weaving stories with deep thinking beyond the limits of the anthropocene, I am trying to recall myself in a more-than-human world. Our planet is suffering human induced ecocide which is a global crisis threatening the existence of multiple life forms. The alchemical mix of storytelling and ecological thinking could be part remedy for humanity's adaptation: a transformational mix to re-pattern the crisis into an opportunity and shift anthropocentric structures toward networks of dynamic relationships. The purpose of this project is to explore this cultural remedy. This is a quest, a search for tools that can germinate the hypothesis: storytelling in relation to ecological thinking manifests human potential in a more-than-human world. The practice-led research is guided by the philosophy and practice of Mythology, Deep ecology and Transdisciplinarity. Further navigation is sourced from Systems Thinking, Indigenous Methodologies, Biomimicry, and Quantum Physics. The journey unfolds by reawakening the Artist's function as caretaker of Mythology and pattern inciter for the collective. The resounding discovery of this adventure is Quantum Narratives: a storytelling tool for today's world, a method to connect multiple ways of knowing and diverse languages with the purpose of engaging, relating and working with living knowledge. Quantum Narratives are used to test the field study research into the Future of Water in context of Coal Seam Gas Mining in the Murray-Darling Basin and to materialise the collaborative results as the Water Stories. This thesis is a Living Script, full of imagination and complexity. Within its folds are strategies for systemic change ready to be adapted by policy and planning brokers and those who hold power for widespread remedial action.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Accurately quantifying total freshwater storage methane release to atmosphere requires the spatial–temporal measurement of both diffusive and ebullitive emissions. Existing floating chamber techniques provide localised assessment of methane flux, however, significant errors can arise when weighting and extrapolation to the entire storage, particularly when ebullition is significant. An improved technique has been developed that compliments traditional chamber based experiments to quantify the storage-scale release of methane gas to atmosphere through ebullition using the measurements from an Optical Methane Detector (OMD) and a robotic boat. This provides a conservative estimate of the methane emission rate from ebullition along with the bubble volume distribution. It also georeferences the area of ebullition activity across entire storages at short temporal scales. An assessment on Little Nerang Dam in Queensland, Australia, demonstrated whole storage methane release significantly differed spatially and throughout the day. Total methane emission estimates showed a potential 32-fold variation in whole-of-dam rates depending on the measurement and extrapolation method and time of day used. The combined chamber and OMD technique showed that 1.8–7.0% of the surface area of Little Nerang Dam is accounting for up to 97% of total methane release to atmosphere throughout the day. Additionally, over 95% of detectable ebullition occurred in depths less than 12 m during the day and 6 m at night. This difference in spatial and temporal methane release rate distribution highlights the need to monitor significant regions of, if not the entire, water storage in order to provide an accurate estimate of ebullition rates and their contribution to annual methane emissions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It was demonstrated recently that dramatic changes in the redox behaviour of gold/aqueous solution interfaces may be observed following either cathodic or thermal electrode pretreatment. Further work on the cathodic pretreatment of gold in acid solution revealed that as the activity of the gold surface was increased, its performance as a substrate for hydrogen gas evolution under constant potential conditions deteriorated. The change in activity of the gold atoms at the interface, which was attributed to a hydrogen embrittlement process (the occurrence of the latter was subsequently checked by surface microscopy), was confirmed, as in earlier work, by the appearance of a substantial anodic peak at ca. 0.5 V (RHE) in a post-activation positive sweep. Changes in the catalytic activity of a metal surface reflect the fact that the structure (or topography), thermodynamic activity and electronic properties of a surface are dependent not only on pretreatment but also, in the case of the hydrogen evolution reaction, vary with time during the course of reaction. As will be reported shortly, similar (and often more dramatic) time-dependent behaviour was observed for hydrogen gas evolution on other metal electrodes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Exploring advanced materials for efficient capture and separation of CO2 is important for CO2 reduction and fuel purification. In this study, we have carried out first-principles density functional theory calculations to investigate CO2, N2, CH4, and H2 adsorption on the amphoteric regioselective B80 fullerene. Based on our calculations, we find that CO2 molecules form strong interactions with the basic sites of the B80 by Lewis acid–base interactions, while there are only weak bindings between the other three gases (N2, CH4, and H2) and the B80 adsorbent. The study also provides insight into the reaction mechanism of capture and separation of CO2 using the electron deficient B80 fullerene.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The research seeks to address the current global water crisis and the built environments effect on the increasing demand for sustainability and water security. The fundamental question in determining the correct approach for water security in the built environment is whether government regulation and legislation could provide the framework for sustainable development and the conscious shift providing that change is the only perceivable option, there is no alternative. This article will attempt to analyse the value of the neo institutional theory as a method for directing individuals and companies to conform to water saving techniques. As is highlighted throughout the article, it will be investigated whether an incentive verse punishment approach to government legislations and regulations would provide the framework required to ensure water security within the built environment. Individuals and companies make certain choices or perform certain actions not because they fear punishment or attempt to conform; neither do they do so because an action is appropriate or feels some sort of social obligation. Instead, the cognitive element of neo institutionalism suggests that individuals make certain choices because they can conceive no alternative. The research seeks to identify whether sustainability and water security can become integrated into all aspects of design and architecture through the perception that 'there is no alternative.' This report seeks to address the omission of water security in the built environment by reporting on a series of investigations, interviews, literature reviews, exemplars and statistics relating to the built environment and the potential for increased water security. The results and analysis support the conclusions that through the support of government and local council, sustainability in the built environment could be achieved and become common practice for developments. Highlighted is the approach required for water management systems integration into the built environment and how these can be developed and maintained effectively between cities, states, countries and cultures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In June 2011 a large phytoplankton bloom resulted in a catastrophic mortality event that affected a large coastal embayment in the Solomon Islands. This consisted of an area in excess of 20 km2 of reef and soft sandy habitats in Marovo Lagoon, the largest double barrier lagoon in the world. This embayment is home to over 1200 people leading largely subsistence lifestyles depending on the impacted reefs for majority of their protein needs. A toxic diatom (Psuedo-nitzchia spp.) and toxic dinoflagellate (Pyrodinium bahamense var. compressum) reached concentrations of millions of cells per litre. The senescent phytoplankton bloom led to complete de-oxygenation of the water column that reportedly caused substantial mortality of marine animal life in the immediate area within a rapid timeframe (24 h). Groups affected included holothurians, crabs and reef and pelagic fish species. Dolphins, reptiles and birds were also found dead within the area, indicating algal toxin accumulation in the food chain. Deep reefs and sediments, whilst initially unaffected, have now been blanketed in large cyanobacterial mats which have negatively impacted live coral cover especially within the deep reef zone (> 6 m depth). Reef recovery within the deep zone has been extremely slow and may indicate an alternative state for the system.