221 resultados para Vehicle Telematics
Resumo:
In this paper, we present a control strategy design technique for an autonomous underwater vehicle based on solutions to the motion planning problem derived from differential geometric methods. The motion planning problem is motivated by the practical application of surveying the hull of a ship for implications of harbor and port security. In recent years, engineers and researchers have been collaborating on automating ship hull inspections by employing autonomous vehicles. Despite the progresses made, human intervention is still necessary at this stage. To increase the functionality of these autonomous systems, we focus on developing model-based control strategies for the survey missions around challenging regions, such as the bulbous bow region of a ship. Recent advances in differential geometry have given rise to the field of geometric control theory. This has proven to be an effective framework for control strategy design for mechanical systems, and has recently been extended to applications for underwater vehicles. Advantages of geometric control theory include the exploitation of symmetries and nonlinearities inherent to the system. Here, we examine the posed inspection problem from a path planning viewpoint, applying recently developed techniques from the field of differential geometric control theory to design the control strategies that steer the vehicle along the prescribed path. Three potential scenarios for surveying a ship?s bulbous bow region are motivated for path planning applications. For each scenario, we compute the control strategy and implement it onto a test-bed vehicle. Experimental results are analyzed and compared with theoretical predictions.
Resumo:
In this paper, we concern ourselves with finding a control strategy that minimizes energy consumption along a trajectory connecting two given configurations. We develop an algorithm, based on our previous work with the time optimal problem, which provides implementable control strategies that are energy efficient. We find an interesting correlation between the duration of these trajectories and the optimal duration. We present the algorithm, control strategy and experimental results from our test-bed vehicle.
Resumo:
This paper is concerned with the design and implementation of control strategies onto a test-bed vehicle with six degrees-of-freedom. We design our trajectories to be efficient in time and in power consumption. Moreover, we also consider cases when actuator failure can arise and discuss alternate control strategies in this situation. Our calculations are supplemented by experimental results.
Resumo:
This paper discusses control strategies adapted for practical implementation and efficient motion of underwater vehicles. These trajectories are piecewise constant thrust arcs with few actuator switchings. We provide the numerical algorithm which computes the time efficient trajectories parameterized by the switching times. We discuss both the theoretical analysis and experimental implementation results.
Resumo:
This paper presents Multi-Step A* (MSA*), a search algorithm based on A* for multi-objective 4D vehicle motion planning (three spatial and one time dimension). The research is principally motivated by the need for offline and online motion planning for autonomous Unmanned Aerial Vehicles (UAVs). For UAVs operating in large, dynamic and uncertain 4D environments, the motion plan consists of a sequence of connected linear tracks (or trajectory segments). The track angle and velocity are important parameters that are often restricted by assumptions and grid geometry in conventional motion planners. Many existing planners also fail to incorporate multiple decision criteria and constraints such as wind, fuel, dynamic obstacles and the rules of the air. It is shown that MSA* finds a cost optimal solution using variable length, angle and velocity trajectory segments. These segments are approximated with a grid based cell sequence that provides an inherent tolerance to uncertainty. Computational efficiency is achieved by using variable successor operators to create a multi-resolution, memory efficient lattice sampling structure. Simulation studies on the UAV flight planning problem show that MSA* meets the time constraints of online replanning and finds paths of equivalent cost but in a quarter of the time (on average) of vector neighbourhood based A*.
Resumo:
An experimental programme in 2007 used three air suspended heavy vehicles travelling over typical urban roads to determine whether dynamic axle-to-chassis forces could be reduced by using larger-than-standard diameter longitudinal air lines. This paper presents methodology, interim analysis and partial results from that programme. Alterations to dynamic measures derived from axle-to-chassis forces for the case of standard-sized longitudinal air lines vs. the test case where larger longitudinal air lines were fitted are presented and discussed. This leads to conclusions regarding the possibility that dynamic loadings between heavy vehicle suspensions and chassis may be reduced by fitting larger longitudinal air lines to air-suspended heavy vehicles. Reductions in the shock and vibration loads to heavy vehicle suspension components could lead to lighter and more economical chassis and suspensions. This could therefore lead to reduced tare and increased payloads without an increase in gross vehicle mass.
Resumo:
The rural two-lane highway in the southeastern United States is frequently associated with a disproportionate number of serious and fatal crashes and as such remains a focus of considerable safety research. The Georgia Department of Transportation spearheaded a regional fatal crash analysis to identify various safety performances of two-lane rural highways and to offer guidance for identifying suitable countermeasures with which to mitigate fatal crashes. The fatal crash data used in this study were compiled from Alabama, Georgia, Mississippi, and South Carolina. The database, developed for an earlier study, included 557 randomly selected fatal crashes from 1997 or 1998 or both (this varied by state). Each participating state identified the candidate crashes and performed physical or video site visits to construct crash databases with enhance site-specific information. Motivated by the hypothesis that single- and multiple-vehicle crashes arise from fundamentally different circumstances, the research team applied binary logit models to predict the probability that a fatal crash is a single-vehicle run-off-road fatal crash given roadway design characteristics, roadside environment features, and traffic conditions proximal to the crash site. A wide variety of factors appears to influence or be associated with single-vehicle fatal crashes. In a model transferability assessment, the authors determined that lane width, horizontal curvature, and ambient lighting are the only three significant variables that are consistent for single-vehicle run-off-road crashes for all study locations.
Resumo:
In 2006, the Faculty of Built Environment and Engineering introduced the first faculty wide unit dedicated to sustainability at any Australian University. BEB200 Introducing Sustainability has semester enrolments of up to 1500 students. Instruments such as lectures, readings, field visits, group projects and structured tutorial activities are used and have evolved over the last five years in response to student and staff feedback and attempts to better engage students. More than seventy staff have taught in the unit, which is in its final offering in this form in 2010. This paper reflects on the experiences of five academics who have played key roles in the development and teaching of this unit over the last five years. They argue that sustainability is a paradigm that allows students to explore other ways of knowing as they engage with issues in a complex world, not an end in itself. From the students’ perspective, grappling with such issues enables them to move towards a context in which they can understand their own discipline and its role in the contradictory and rapidly changing professional world. Insights are offered into how sustainability units may be developed in the future.
Resumo:
Dynamic load sharing can be defined as a measure of the ability of a heavy vehicle multi-axle group to equalise load across its wheels under typical travel conditions; i.e. in the dynamic sense at typical travel speeds and operating conditions of that vehicle. Various attempts have been made to quantify the ability of heavy vehicles to equalise the load across their wheels during travel. One of these was the concept of the load sharing coefficient (LSC). Other metrics such as the dynamic load coefficient (DLC), peak dynamic wheel force (PDWF) and dynamic impact force (DIF) have been used to compare one heavy vehicle suspension with another for potential road damage. This paper compares these metrics and determines a relationship between DLC and LSC with sensitivity analysis of this relationship. The shortcomings of the presently-available metrics are discussed with a new metric proposed - the dynamic load equalisation (DLE) measure.
Resumo:
A Simulink Matlab control system of a heavy vehicle suspension has been developed. The aim of the exercise presented in this paper was to develop a Simulink Matlab control system of a heavy vehicle suspension. The objective facilitated by this outcome was the use of a working model of a heavy vehicle (HV) suspension that could be used for future research. A working computer model is easier and cheaper to re-configure than a HV axle group installed on a truck; it presents less risk should something go wrong and allows more scope for variation and sensitivity analysis before embarking on further "real-world" testing. Empirical data recorded as the input and output signals of a heavy vehicle (HV) suspension were used to develop the parameters for computer simulation of a linear time invariant system described by a second-order differential equation of the form: (i.e. a "2nd-order" system). Using the empirical data as an input to the computer model allowed validation of its output compared with the empirical data. The errors ranged from less than 1% to approximately 3% for any parameter, when comparing like-for-like inputs and outputs. The model is presented along with the results of the validation. This model will be used in future research in the QUT/Main Roads project Heavy vehicle suspensions – testing and analysis, particularly so for a theoretical model of a multi-axle HV suspension with varying values of dynamic load sharing. Allowance will need to be made for the errors noted when using the computer models in this future work.
Resumo:
The focus of this study is on curriculum change within a School of Nursing in Taiwan where there is a growing demand for educational reform in order to meet the new accreditation standards and demands of the Taiwan Nursing Accreditation Council (TNAC). The aim of this study was to transform the Psychiatric Nursing curriculum in ways that are empowering, generative and sustainable. This study introduced Action Research as a vehicle to bring about curriculum transformation. I conceptualised a framework to guide the transformation process based on the notions of learner-centredness, conceptual change, pedagogical knowledge, reflection, collaboration, reculturing and empowerment. The Action Plan was developed in accordance with the conceptual framework, and was developed in five steps through which team members explored and became aware of our conceptions of teaching and learning, and then planned and implemented actions to change our curriculum, and examined and reflected on the curriculum transformation. The study demonstrated the value of working collaboratively to solve educational problems. This study also suggested that experiential knowledge, when shared and integrated with theoretical knowledge, can constructively contribute to all aspects of curriculum transformation. This study further supported the value of including clinical facilitators in the development and transformation of curricula. It confirmed that academics and clinical facilitators can work together to create new learning for students. This study is significant for both practical and political reasons. Its practical significance lies in its direct utility to the learners and teachers who were involved in the study. The political significance lies in the potential of the study to lead to further changes or improvements in other, similar contexts. The study is limited in that any interpretations cannot be generalised to other contexts. However, what emerged adds to the body of knowledge in such a way that it would constitute the basis for better informed educational practice.
Resumo:
Research has demonstrated that driving a vehicle for work is potentially one of the most dangerous workplace activities. Although organisations are required to meet legislative obligations under workplace health and safety in relation to work related vehicle use, organisations are often reluctant to acknowledge and address the risks associated with the vehicle as a workplace. Recent research undertaken investigating the challenges associated with driver and organisational aspects of fleet safety are discussed. This paper provides a risk management framework to assist organisations to meet legislative requirements and reduce the risk associated with vehicle use in the workplace. In addition the paper argues that organisations need to develop and maintain a positive fleet safety culture to proactively mitigate risk in an effort to reduce the frequency and severity of vehicle related incidents within the workplace.
Resumo:
Increasingly, national and international governments have a strong mandate to develop national e-health systems to enable delivery of much-needed healthcare services. Research is, therefore, needed into appropriate security and reliance structures for the development of health information systems which must be compliant with governmental and alike obligations. The protection of e-health information security is critical to the successful implementation of any e-health initiative. To address this, this paper proposes a security architecture for index-based e-health environments, according to the broad outline of Australia’s National E-health Strategy and National E-health Transition Authority (NEHTA)’s Connectivity Architecture. This proposal, however, could be equally applied to any distributed, index-based health information system involving referencing to disparate health information systems. The practicality of the proposed security architecture is supported through an experimental demonstration. This successful prototype completion demonstrates the comprehensibility of the proposed architecture, and the clarity and feasibility of system specifications, in enabling ready development of such a system. This test vehicle has also indicated a number of parameters that need to be considered in any national indexed-based e-health system design with reasonable levels of system security. This paper has identified the need for evaluation of the levels of education, training, and expertise required to create such a system.
Resumo:
Operation in urban environments creates unique challenges for research in autonomous ground vehicles. Due to the presence of tall trees and buildings in close proximity to traversable areas, GPS outage is likely to be frequent and physical hazards pose real threats to autonomous systems. In this paper, we describe a novel autonomous platform developed by the Sydney-Berkeley Driving Team for entry into the 2007 DARPA Urban Challenge competition. We report empirical results analyzing the performance of the vehicle while navigating a 560-meter test loop multiple times in an actual urban setting with severe GPS outage. We show that our system is robust against failure of global position estimates and can reliably traverse standard two-lane road networks using vision for localization. Finally, we discuss ongoing efforts in fusing vision data with other sensing modalities.