642 resultados para School mathematics
Resumo:
This chapter examines how a change in school leadership can successfully address competencies in complex situations and thus create a positive learning environment in which Indigenous students can excel in their learning rather than accept a culture that inhibits school improvement. Mathematics has long been an area that has failed to assist Indigenous students in improving their learning outcomes, as it is a Eurocentric subject (Rothbaum, Weisz, Pott, Miyake & Morelli, 2000, De Plevitz, 2007) and does not contextualize pedagogy with Indigenous culture and perspectives (Matthews, Cooper & Baturo, 2007). The chapter explores the work of a team of Indigenous and non-Indigenous academics from the YuMi Deadly Centre who are turning the tide on improving Indigenous mathematical outcomes in schools and in communities with high numbers of Aboriginal and Torres Strait Islander students.
Resumo:
This paper focuses on implementing engineering education in middle school classrooms (grade levels 7-9). One of the aims of the study was to foster students’ and teachers’ knowledge and understanding of engineering in society. Given the increasing importance of engineering in shaping our daily lives, it is imperative that we foster in students an interest and drive to participate in engineering education, increase their awareness of engineering as a career path, and inform them of the links between engineering and the enabling subjects, mathematics, science, and technology. Data for the study are drawn from five classes across three schools. Grade 7 students’ responded to initial whole class discussions on what is an engineer, what is engineering, what characteristics engineers require, engineers (family/friends) that they know, and subjects that may facilitate an engineering career. Students generally viewed engineers as creative, future-oriented, and artistic problem finders and solvers; planners and designers; “seekers” and inventors; and builders of constructions. Students also viewed engineers as adventurous, decisive, community-minded, reliable, and “smart.” In addition to a range of mathematics and science topics, students identified business studies, ICT, graphics, art, and history as facilitating careers in engineering. Although students displayed a broadened awareness of engineering than the existing research suggests, there was limited knowledge of various engineering fields and a strong perception of engineering as large construction.
Resumo:
This paper discusses women’s involvement in their children’s mathematics education. It does, where possible, focus Torres Strait Islander women who share the aspirations of Aborginal communities around Australia. That is, they are keen for their children to receive an education that provides them with opportunities for their present and future lives. They are also keen to have their cultures’ child learning practices recognised and respected within mainstream education. This recognition has some way to go with the language of instruction in schools written to English conventions, decontextualised and disconnected to the students’ culture, Community and home language.
Resumo:
It is generally agreed that if authentic teacher change is to occur then the tacit knowledge about how and why they act in certain ways in the classroom be accessed and reflected upon. While critical reflection can and often is an individual experience there is evidence to suggest that teachers are more likely to engage in the process when it is approached in a collegial manner; that is, when other teachers are involved in and engaged with the same process. Teachers do not enact their profession in isolation but rather exist within a wider community of teachers. An outside facilitator can also play an active and important role in achieving lasting teacher change. According to Stein and Brown (1997) “an important ingredient in socially based learning is that graduations of expertise and experience exist when teachers collaborate with each other or outside experts” (p. 155). To assist in the effective professional development of teachers, outside facilitators, when used, need to provide “a dynamic energy producing interactive experience in which participants examine and explore the complex components of teaching” (Bolster, 1995, p. 193). They also need to establish rapport with the participating teachers that is built on trust and competence (Hyde, Ormiston, & Hyde, 1994). For this to occur, professional development involving teachers and outside facilitators or researchers should not be a one-off event but an ongoing process of engagement that enables both the energy and trust required to develop. Successful professional development activities are therefore collaborative, relevant and provide individual, specialised attention to the teachers concerned. The project reported here aimed to provide professional development to two Year 3 teachers to enhance their teaching of a new mathematics content area, mental computation. This was achieved through the teachers collaborating with a researcher to design an instructional program for mental computation that drew on theory and research in the field.
Resumo:
Worldwide, there is considerable attention to providing a supportive mathematics learning environment for young children because attitude formation and achievement in these early years of schooling have a lifelong impact. Key influences on young children during these early years are their teachers. Practising early years teachers‟ attitudes towards mathematics influence the teaching methods they employ, which in turn, affects young students‟ attitudes towards mathematics, and ultimately, their achievement. However, little is known about practising early years teachers‟ attitudes to mathematics or how these attitudes form, which is the focus of this study. The research questions were: 1. What attitudes do practising early years teachers hold towards mathematics? 2. How did the teachers‟ mathematics attitudes form? This study adopted an explanatory case study design (Yin, 2003) to investigate practising early years teachers‟ attitudes towards mathematics and the formation of these attitudes. The research took place in a Brisbane southside school situated in a middle socio-economic area. The site was chosen due to its accessibility to the researcher. The participant group consisted of 20 early years teachers. They each completed the Attitude Towards Mathematics Inventory (ATMI) (Schackow, 2005), which is a 40 item instrument that measures attitudes across the four dimensions of attitude, namely value, enjoyment, self-confidence and motivation. The teachers‟ total ATMI scores were classified according to five quintiles: strongly negative, negative, neutral, positive and strongly positive. The results of the survey revealed that these teachers‟ attitudes ranged across only three categories with one teacher classified as strongly positive, twelve teachers classified as positive and seven teachers classified as neutral. No teachers were identified as having negative or strongly negative attitudes. Subsequent to the surveys, six teachers with a breadth of attitudes were selected from the original cohort to participate in open-ended interviews to investigate the formation of their attitudes. The interview data were analysed according to the four dimensions of attitudes (value, enjoyment, self-confidence, motivation) and three stages of education (primary, secondary, tertiary). Highlighted in the findings is the critical impact of schooling experiences on the formation of student attitudes towards mathematics. Findings suggest that primary school experiences are a critical influence on the attitudes of adults who become early years teachers. These findings also indicate the vital role tertiary institutions play in altering the attitudes of preservice teachers who have had negative schooling experiences. Experiences that teachers indicated contributed to the formation of positive attitudes in their own education were games, group work, hands-on activities, positive feedback and perceived relevance. In contrast, negative experiences that teachers stated influenced their attitudes were insufficient help, rushed teaching, negative feedback and a lack of relevance of the content. These findings together with the literature on teachers‟ attitudes and mathematics education were synthesized in a model titled a Cycle of Early Years Teachers’ Attitudes Towards Mathematics. This model explains positive and negative influences on attitudes towards mathematics and how the attitudes of adults are passed on to children, who then as adults themselves, repeat the cycle by passing on attitudes to a new generation. The model can provide guidance for practising teachers and for preservice and inservice education about ways to foster positive influences to attitude formation in mathematics and inhibit negative influences. Two avenues for future research arise from the findings of this study both relating to attitudes and secondary school experiences. The first question relates to the resilience of attitudes, in particular, how an individual can maintain positive attitudes towards mathematics developed in primary school, despite secondary school experiences that typically have a negative influence on attitude. The second question relates to the relationship between attitudes and achievement, specifically, why secondary students achieve good grades in mathematics despite a lack of enjoyment, which is one of the dimensions of attitude.
Resumo:
In Australia, there is a crisis in science education with students becoming disengaged with canonical science in the middle years of schooling. One recent initiative that aims to improve student interest and motivation without diminishing conceptual understanding is the context-based approach. Contextual units that connect the canonical science with the students’ real world of their local community have been used in the senior years but are new in the middle years. This ethnographic study explored the learning transactions that occurred in one 9th grade science class studying an Environmental Science unit for 11 weeks. Data were derived from field notes, audio and video recorded conversations, interviews, student journals and classroom documents with a particular focus on two selected groups of students. Data were analysed qualitatively through coding for emergent themes. This paper presents an outline of the program and discussion of three assertions derived from the preliminary analysis of the data. Firstly, an integrated, coherent sequence of learning experiences that included weekly visits to a creek adjacent to the school enabled the teacher to contextualise the science in the students’ local community. Secondly, content was predominantly taught on a need-to-know basis and thirdly, the lesson sequence aligned with a model for context-based teaching. Research, teaching and policy implications of these results for promoting the context-based teaching of science in the middle years are discussed.
Resumo:
This paper argues for a renewed focus on statistical reasoning in the beginning school years, with opportunities for children to engage in data modelling. Some of the core components of data modelling are addressed. A selection of results from the first data modelling activity implemented during the second year (2010; second grade) of a current longitudinal study are reported. Data modelling involves investigations of meaningful phenomena, deciding what is worthy of attention (identifying complex attributes), and then progressing to organising, structuring, visualising, and representing data. Reported here are children's abilities to identify diverse and complex attributes, sort and classify data in different ways, and create and interpret models to represent their data.
Resumo:
This paper argues for a renewed focus on statistical reasoning in the elementary school years, with opportunities for children to engage in data modeling. Data modeling involves investigations of meaningful phenomena, deciding what is worthy of attention, and then progressing to organizing, structuring, visualizing, and representing data. Reported here are some findings from a two-part activity (Baxter Brown’s Picnic and Planning a Picnic) implemented at the end of the second year of a current three-year longitudinal study (grade levels 1-3). Planning a Picnic was also implemented in a grade 7 class to provide an opportunity for the different age groups to share their products. Addressed here are the grade 2 children’s predictions for missing data in Baxter Brown’s Picnic, the questions posed and representations created by both grade levels in Planning a Picnic, and the metarepresentational competence displayed in the grade levels’ sharing of their products for Planning a Picnic.
Resumo:
The Pattern and Structure Mathematical Awareness Program(PASMAP) stems from a 2-year longitudinal study on students’ early mathematical development. The paper outlines the interview assessment the Pattern and Structure Assessment(PASA) designed to describe students’ awareness of mathematical pattern and structure across a range of concepts. An overview of students’ performance across items and descriptions of their structural development are described.
Resumo:
Women are underrepresented in science, technology, engineering and mathematics (STEM) university coursework, reflecting long-standing gender issues that have existed in core middle-school STEM subject areas. Using data from a survey and written responses, we report on findings following the introduction of engineering education in middle school classes across three schools (grade level 7, n=122). The engineering experiences fused science, technology and mathematics concepts. The survey revealed higher percentages for girls than boys in 13 of the 24 items; however there were six items with a 20% difference in their perceptions about learning in STEM. For instance, despite girls recording that they have been provided equal or more opportunities than boys in STEM, they believed they do not do as well as boys (80% boys, 48% girls) or want to seek a career in STEM (39% boys, 17% girls). The written responses revealed gender differences across a number of themes in the students’ responses, including resources, group work, the nature and type of learning experiences, content knowledge, and teachers’ instructional style. Exposing students to STEM education facilitates an awareness of their learning and may assist girls to consider studying STEM subjects or STEM careers.
Resumo:
The world’s increasing complexity, competitiveness, interconnectivity, and dependence on technology generate new challenges for nations and individuals that cannot be met by continuing education as usual (Katehi, Pearson, & Feder, 2009). With the proliferation of complex systems have come new technologies for communication, collaboration, and conceptualisation. These technologies have led to significant changes in the forms of mathematical and scientific thinking that are required beyond the classroom. Modelling, in its various forms, can develop and broaden children’s mathematical and scientific thinking beyond the standard curriculum. This paper first considers future competencies in the mathematical sciences within an increasingly complex world. Next, consideration is given to interdisciplinary problem solving and models and modelling. Examples of complex, interdisciplinary modelling activities across grades are presented, with data modelling in 1st grade, model-eliciting in 4th grade, and engineering-based modelling in 7th-9th grades.
Resumo:
There is unprecedented worldwide demand for mathematical solutions to complex problems. That demand has generated a further call to update mathematics education in a way that develops students’ abilities to deal with complex systems.
Resumo:
Background: The objective of this study was to scrutinize number line estimation behaviors displayed by children in mathematics classrooms during the first three years of schooling. We extend existing research by not only mapping potential logarithmic-linear shifts but also provide a new perspective by studying in detail the estimation strategies of individual target digits within a number range familiar to children. Methods: Typically developing children (n = 67) from Years 1 – 3 completed a number-to-position numerical estimation task (0-20 number line). Estimation behaviors were first analyzed via logarithmic and linear regression modeling. Subsequently, using an analysis of variance we compared the estimation accuracy of each digit, thus identifying target digits that were estimated with the assistance of arithmetic strategy. Results: Our results further confirm a developmental logarithmic-linear shift when utilizing regression modeling; however, uniquely we have identified that children employ variable strategies when completing numerical estimation, with levels of strategy advancing with development. Conclusion: In terms of the existing cognitive research, this strategy factor highlights the limitations of any regression modeling approach, or alternatively, it could underpin the developmental time course of the logarithmic-linear shift. Future studies need to systematically investigate this relationship and also consider the implications for educational practice.