92 resultados para Inland navigation.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the experimental evaluation of a novel Autonomous Surface Vehicle capable of navigating complex inland water reservoirs and measuring a range of water quality properties and greenhouse gas emissions. The 16 ft long solar powered catamaran is capable of collecting water column profiles whilst in motion. It is also directly integrated with a reservoir scale floating sensor network to allow remote mission uploads, data download and adaptive sampling strategies. This paper describes the onboard vehicle navigation and control algorithms as well as obstacle avoidance strategies. Experimental results are shown demonstrating its ability to maintain track and avoid obstacles on a variety of large-scale missions and under differing weather conditions, as well as its ability to continuously collect various water quality parameters complimenting traditional manual monitoring campaigns.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The central document governing the global organization of Air Navigation Services (ANS) is the Convention on International Civil Aviation, commonly referred to as the “Chicago Convention,” whose original version was signed in that city in 1944. In the Convention, Contracting States agreed to ensure the minimum standards of ANS established by ICAO, a specialized United Nations agency created by the Convention. Emanating from obligations under the Chicago Convention, ANS has traditionally provided by departments of national governments. However, there is a widespread trend toward transferring delivery of ANS services outside of line departments of national governments to independent agencies or corporations. The Civil Air Navigation Services Organisation (CANSO), which is the trade association for independent ANS providers, currently counts approximately 60 members, and is steadily growing. However, whatever delivery mechanisms are chosen, national governments remain ultimately responsible for ensuring that adequate ANS services are available. The provision by governments of ANS reflects the responsibility of the state for safety, international relations, and indirectly, the macroeconomic benefits of ensuring a sound infrastructure for aviation. ANS is a “public good” and an “essential good” provided to all aircraft using a country’s airfields and airspace. However, ANS also represents a service that directly benefits only a limited number of users, notably aircraft owners and operators. The idea that the users of the system, rather than the taxpaying public, should incur the costs associated with ANS provision is inherent in the commercialization process. However, ICAO sets out broad principles for the establishment of user charges, which member states are expected to comply with. ICAO states that only distance flown and aircraft weights are acceptable parameters for use in a charging system. These two factors are considered to be easy to measure, bear a reasonable relationship to the value of service received, and do not discriminate due to factors such as where the flight originated or the nation of aircraft registration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we describe the benefits of a performance-based approach to modeling biological systems for use in robotics. Specifically, we describe the RatSLAM system, a computational model of the navigation processes thought to drive navigation in a part of the rodent brain called the hippocampus. Unlike typical computational modeling approaches, which focus on biological fidelity, RatSLAM’s development cycle has been driven primarily by performance evaluation on robots navigating in a wide variety of challenging, real world environments. We briefly describe three seminal results, two in robotics and one in biology. In addition, we present current research on brain-inspired learning algorithms with the aim of enabling a robot to autonomously learn how best to use its sensor suite to navigate, without requiring any specific knowledge of the robot, sensor types or environment characteristics. Our aim is to drive discussion on the merits of practical, performance-focused implementations of biological models in robotics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis describes the investigation of an Aircraft Dynamic Navigation (ADN) approach, which incorporates an Aircraft Dynamic Model (ADM) directly into the navigation filter of a fixed-wing aircraft or UAV. The result is a novel approach that offers both performance improvements and increased reliability during short-term GPS outages. This is important in allowing future UAVs to achieve routine, unconstrained, and safe operations in commercial environments. The primary contribution of this research is the formulation Unscented Kalman Filter (UKF) which incorporates a complex, non-linear, laterally and longitudinally coupled, ADM, and sensor suite consisting of a Global Positioning System (GPS) receiver, Inertial Measurement Unit (IMU), Electronic Compass (EC), and Air Data (AD) Pitot Static System.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Airports accommodate passengers with a range of prior experience, from frequent flyers, to passengers who fly every couple of years, to those who have never flown before. Passengers with varying levels of prior experience may use different visual elements when navigating the airport. Ensuring all passengers can navigate to the processing activities intuitively is important for passengers, airports and airlines. This paper examines how participants with Low, Medium and High airport familiarity navigate through the departures area at an Australian international airport. Three navigation activities are investigated: (i) navigating to the check-in row, (ii) navigating through the Liquids, Aerosols and Gels (LAGs) preparation area before security screening, and; (iii) navigating to either the boarding gate first or to a discretionary activity first, after exiting customs. In the three activities, differences were observed between the familiarity groups. These differences include the use of different information to locate the check-in desk, different actions when navigating through the LAG preparation area, and evidence that Low familiarity passengers have a desire to locate the boarding gate as soon as possible once through customs. This research provides evidence based design reccomendations for airports to benefit from intuitive passenger navigation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of global navigation satellite systems (GNSS) provides a solution of many applied problems with increasingly higher quality and accuracy nowadays. Researches that are carried out by the Bavarian Academy of Sciences and Humanities in Munich (BAW) in the field of airborne gravimetry are based on sophisticated data processing from high frequency GNSS receiver for kinematic aircraft positioning. Applied algorithms for inertial acceleration determination are based on the high sampling rate (50Hz) and on reducing of such factors as ionosphere scintillation and multipath at aircraft /antenna near field effects. The quality of the GNSS derived kinematic height are studied also by intercomparison with lift height variations collected by a precise high sampling rate vertical scale [1]. This work is aimed at the ways of more accurate determination of mini-aircraft altitude by means of high frequency GNSS receivers, in particular by considering their dynamic behaviour.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Современный этап развития комплексов автоматического управления и навигации малогабаритными БЛА многократного применения предъявляет высокие требования к автономности, точности и миниатюрности данных систем. Противоречивость требований диктует использование функционального и алгоритмического объединения нескольких разнотипных источников навигационной информации в едином вычислительном процессе на основе методов оптимальной фильтрации. Получили широкое развитие бесплатформенные инерциальные навигационные системы (БИНС) на основе комплексирования данных микромеханических датчиков инерциальной информации и датчиков параметров движения в воздушном потоке с данными спутниковых навигационных систем (СНС). Однако в современных условиях такой подход не в полной мере реализует требования к помехозащищённости, автономности и точности получаемой навигационной информации. Одновременно с этим достигли значительного прогресса навигационные системы, использующие принципы корреляционно экстремальной навигации по оптическим ориентирам и цифровым картам местности. Предлагается схема построения автономной автоматической навигационной системы (АНС) для БЛА многоразового применения на основе объединения алгоритмов БИНС, спутниковой навигационной системы и оптической навигационной системы. The modern stage of automatic control and guidance systems development for small unmanned aerial vehicles (UAV) is determined by advanced requirements for autonomy, accuracy and size of the systems. The contradictory of the requirements dictates novel functional and algorithmic tight coupling of several different onboard sensors into one computational process, which is based on methods of optimal filtering. Nowadays, data fusion of micro-electro mechanical sensors of inertial measurement units, barometric pressure sensors, and signals of global navigation satellite systems (GNSS) receivers is widely used in numerous strap down inertial navigation systems (INS). However, the systems do not fully comply with such requirements as jamming immunity, fault tolerance, autonomy, and accuracy of navigation. At the same time, the significant progress has been recently demonstrated by the navigation systems, which use the correlation extremal principle applied for optical data flow and digital maps. This article proposes a new architecture of automatic navigation management system (ANMS) for small UAV, which combines algorithms of strap down INS, satellite navigation and optical navigation system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

В статье представлено развитие принципа построения автоматической пилотажно-навигационной системы (АПНС) для беспилотного летательного аппарата (БЛА). Принцип заключается в синтезе комплексных систем управления БПЛА не только на основе использования алгоритмов БИНС, но и алгоритмов, объединяющих в себе решение задач формирования и отработки сформированной траектории резервированной системой управления и навигации. Приведены результаты аналитического исследования и данные летных экспериментов разработанных алгоритмов АПНС БЛА, обеспечивающих дополнительное резервирование алгоритмов навигации и наделяющих БЛА новым функциональной способностью по выходу в заданную точку пространства с заданной скоростью в заданный момент времени с учетом атмосферных ветровых возмущений. Предложена и испытана методика идентификации параметров воздушной атмосферы: направления и скорости W ветра. Данные летных испытаний полученного решения задачи терминальной навигации демонстрируют устойчивую работу синтезированных алгоритмов управления в различных метеоусловиях. The article presents a progress in principle of development of automatic navigation management system (ANMS) for small unmanned aerial vehicle (UAV). The principle defines a development of integrated control systems for UAV based on tight coupling of strap down inertial navigation system algorithms and algorithms of redundant flight management system to form and control flight trajectory. The results of the research and flight testing of the developed ANMS UAV algorithms are presented. The system demonstrates advanced functional redundancy of UAV guidance. The system enables new UAV capability to perform autonomous multidimensional navigation along waypoints with controlled speed and time of arrival taking into account wind. The paper describes the technique for real-time identification of atmosphere parameters such as wind direction and wind speed. The flight test results demonstrate robustness of the algorithms in diverse meteorological conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been shown that abilities in spatial learning and memory are adversely affected by aging. The present study was conducted to investigate whether increasing age has equal consequences for all types of spatial learning or impacts certain types of spatial learning selectively. Specifically, two major types of spatial learning, exploratory navigation and map reading, were contrasted. By combining a neuroimaging finding that the medial temporal lobe (MTL) is especially important for exploratory navigation and a neurological finding that the MTL is susceptible to age-related atrophy, it was hypothesized that spatial learning through exploratory navigation would exhibit a greater decline in later life than spatial learning through map reading. In an experiment, young and senior participants learned locations of landmarks in virtual environments either by navigating in them in the first-person perspective or by seeing aerial views of the environments. Results showed that senior participants acquired less accurate memories of the layouts of landmarks than young participants when they navigated in the environments, but the two groups did not differ in spatial learning performance when they viewed the environments from the aerial perspective. These results suggest that spatial learning through exploratory navigation is particularly vulnerable to adverse effects of aging, whereas elderly adults may be able to maintain their map reading skills relatively well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes a novel vision based texture tracking method to guide autonomous vehicles in agricultural fields where the crop rows are challenging to detect. Existing methods require sufficient visual difference between the crop and soil for segmentation, or explicit knowledge of the structure of the crop rows. This method works by extracting and tracking the direction and lateral offset of the dominant parallel texture in a simulated overhead view of the scene and hence abstracts away crop-specific details such as colour, spacing and periodicity. The results demonstrate that the method is able to track crop rows across fields with extremely varied appearance during day and night. We demonstrate this method can autonomously guide a robot along the crop rows.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have developed a Hierarchical Look-Ahead Trajectory Model (HiLAM) that incorporates the firing pattern of medial entorhinal grid cells in a planning circuit that includes interactions with hippocampus and prefrontal cortex. We show the model’s flexibility in representing large real world environments using odometry information obtained from challenging video sequences. We acquire the visual data from a camera mounted on a small tele-operated vehicle. The camera has a panoramic field of view with its focal point approximately 5 cm above the ground level, similar to what would be expected from a rat’s point of view. Using established algorithms for calculating perceptual speed from the apparent rate of visual change over time, we generate raw dead reckoning information which loses spatial fidelity over time due to error accumulation. We rectify the loss of fidelity by exploiting the loop-closure detection ability of a biologically inspired, robot navigation model termed RatSLAM. The rectified motion information serves as a velocity input to the HiLAM to encode the environment in the form of grid cell and place cell maps. Finally, we show goal directed path planning results of HiLAM in two different environments, an indoor square maze used in rodent experiments and an outdoor arena more than two orders of magnitude larger than the indoor maze. Together these results bridge for the first time the gap between higher fidelity bio-inspired navigation models (HiLAM) and more abstracted but highly functional bio-inspired robotic mapping systems (RatSLAM), and move from simulated environments into real-world studies in rodent-sized arenas and beyond.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Real-world environments such as houses and offices change over time, meaning that a mobile robot’s map will become out of date. In previous work we introduced a method to update the reference views in a topological map so that a mobile robot could continue to localize itself in a changing environment using omni-directional vision. In this work we extend this longterm updating mechanism to incorporate a spherical metric representation of the observed visual features for each node in the topological map. Using multi-view geometry we are then able to estimate the heading of the robot, in order to enable navigation between the nodes of the map, and to simultaneously adapt the spherical view representation in response to environmental changes. The results demonstrate the persistent performance of the proposed system in a long-term experiment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Real-world environments such as houses and offices change over time, meaning that a mobile robot’s map will become out of date. In this work, we introduce a method to update the reference views in a hybrid metrictopological map so that a mobile robot can continue to localize itself in a changing environment. The updating mechanism, based on the multi-store model of human memory, incorporates a spherical metric representation of the observed visual features for each node in the map, which enables the robot to estimate its heading and navigate using multi-view geometry, as well as representing the local 3D geometry of the environment. A series of experiments demonstrate the persistence performance of the proposed system in real changing environments, including analysis of the long-term stability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis presents an approach for a vertical infrastructure inspection using a vertical take-off and landing (VTOL) unmanned aerial vehicle and shared autonomy. Inspecting vertical structure such as light and power distribution poles is a difficult task. There are challenges involved with developing such an inspection system, such as flying in close proximity to a target while maintaining a fixed stand-off distance from it. The contributions of this thesis fall into three main areas. Firstly, an approach to vehicle dynamic modeling is evaluated in simulation and experiments. Secondly, EKF-based state estimators are demonstrated, as well as estimator-free approaches such as image based visual servoing (IBVS) validated with motion capture ground truth data. Thirdly, an integrated pole inspection system comprising a VTOL platform with human-in-the-loop control, (shared autonomy) is demonstrated. These contributions are comprehensively explained through a series of published papers.