A hierarchical model of goal directed navigation selects trajectories in a visual environment
Data(s) |
01/01/2015
|
---|---|
Resumo |
We have developed a Hierarchical Look-Ahead Trajectory Model (HiLAM) that incorporates the firing pattern of medial entorhinal grid cells in a planning circuit that includes interactions with hippocampus and prefrontal cortex. We show the model’s flexibility in representing large real world environments using odometry information obtained from challenging video sequences. We acquire the visual data from a camera mounted on a small tele-operated vehicle. The camera has a panoramic field of view with its focal point approximately 5 cm above the ground level, similar to what would be expected from a rat’s point of view. Using established algorithms for calculating perceptual speed from the apparent rate of visual change over time, we generate raw dead reckoning information which loses spatial fidelity over time due to error accumulation. We rectify the loss of fidelity by exploiting the loop-closure detection ability of a biologically inspired, robot navigation model termed RatSLAM. The rectified motion information serves as a velocity input to the HiLAM to encode the environment in the form of grid cell and place cell maps. Finally, we show goal directed path planning results of HiLAM in two different environments, an indoor square maze used in rodent experiments and an outdoor arena more than two orders of magnitude larger than the indoor maze. Together these results bridge for the first time the gap between higher fidelity bio-inspired navigation models (HiLAM) and more abstracted but highly functional bio-inspired robotic mapping systems (RatSLAM), and move from simulated environments into real-world studies in rodent-sized arenas and beyond. |
Formato |
application/pdf |
Identificador | |
Publicador |
Elsevier |
Relação |
http://eprints.qut.edu.au/74664/3/74664.pdf DOI:10.1016/j.nlm.2014.07.003 Erdem, Uğur M., Milford, Michael, & Hasselmo, Michael E. (2015) A hierarchical model of goal directed navigation selects trajectories in a visual environment. Neurobiology of Learning and Memory, 117, pp. 109-121. http://purl.org/au-research/grants/ARC/DP120102775 |
Direitos |
Copyright 2014 Elsevier Inc. This is the author’s version of a work that was accepted for publication in Neurobiology of Learning and Memory. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Neurobiology of Learning and Memory, Volume 117, January 2015, DOI: 10.1016/j.nlm.2014.07.003 |
Fonte |
School of Electrical Engineering & Computer Science; Science & Engineering Faculty |
Palavras-Chave | #Navigation #Path planning #Grid cell #Place cell #Hippocampus #SLAM #RatSLAM |
Tipo |
Journal Article |