172 resultados para Education, Leadership|Education, Administration|Education, Secondary
Resumo:
Leadership and creativity have received increasing attention from researchers in the field of higher education; however, empirical studies investigating these topics simultaneously are rare. In this study, the authors examined relationships between PhD students' perceptions of their advising professors' passive-avoidant, transactional, and transformational leadership behaviors and professors' ratings of their students' work-related creativity. Data were provided by 71 dyads of professors and PhD students. Consistent with expectations based on the leadership literature on followers' identification with their leaders, results showed that students' perceptions of professors' transformational leadership positively predicted professors' ratings of their students' creativity above and beyond students' perceptions of professors' passive-avoidant and transactional leadership. Contrary to expectations, students' perceptions of professors' passive-avoidant and transactional leadership did not significantly predict professors' ratings of students' creativity. Implications for future research on leadership and creativity as well as tentative practical applications of the findings in higher education settings are discussed.
Resumo:
Science education has been the subject of increasing public interest over the last few years. While a good part of this attention has been due to the fundamental reshaping of school curricula and teacher professional standards currently underway, there has been a heightened level of critical media commentary about the state of science education in schools and science teacher education in universities. In some cases, the commentary has been informed by sound evidence and balanced perspectives. More recently, however, a greater degree of ignorance and misrepresentation has crept into the discourse. This chapter provides background on the history and status of science teacher education in Australia, along with insights into recent developments and challenges.
Resumo:
Views on the nature and relevance of science education have changed significantly over recent decades. This has serious implications for the way in which science is taught in secondary schools, particularly with respect to teaching emerging topics such as biotechnology, which have a socio-scientific dimension and also require novel laboratory skills. It is apparent in current literature that there is a lack of adequate teacher professional development opportunities in biotechnology education and that a significant need exists for researchers to develop a carefully crafted and well supported professional development design which will positively impact on the way in which teachers engage with contemporary science. This study used a retrospective case study methodology to document the recent evolution of modern biotechnology education as part of the changing nature of science education; examine the adoption and implementation processes for biotechnology education by three secondary schools; and to propose an evidence based biotechnology professional development model for science educators. Data were gathered from documents, one-on-one interviews and focus group discussions. Analysis of these data has led to the proposal of a biotechnology professional development model which considers all of the key components of science professional development that are outlined in the literature, as well as the additional components which were articulated by the educators studied. This research is timely and pertinent to the needs of contemporary science education because of its recognition of the need for a professional development model in biotechnology education that recognizes and addresses the content knowledge, practical skills, pedagogical knowledge and curriculum management components.
Resumo:
In Australia, advertising is a $13 billion industry which needs a supply of suitably skilled employees. Over the years, advertising education has developed from vocational based courses to degree courses across the country. This paper uses diffusion theory and various secondary sources and interviews to observe the development of advertising education in Australia from its early past, to its current day tertiary offerings, to discussing the issues that are arising in the near future. Six critical issues are identified, along with observations about the challenges and opportunities within Australia advertising education. By looking back to the future, it is hoped that this historical review provides lessons for other countries of similar educational structure or background, or even other marketing communication disciplines on a similar evolutionary path.
Resumo:
The young people who populate our classrooms live in a changed and rapidly changing society: a society where information is the most valued commodity and where traditional ‘truth’s such as nation and family are increasingly destabilized and fragmented. Educators at primary, secondary and tertiary level must, with some urgency, address issues relating the emergence of new citizenships and identities, the impact of new technologies and new economies. Our pedagogy and curriculums must be relevant to the need of students now and in the future. The School of Education, The University of Queensland is addressing issues of change, new technologies, new work places, critical citizenry and the need for pedagogical and curriculum innovation through the development of a new Middle Years of Schooling Dual Degree program. This program is designed to equip pre-service teachers to approach pedagogy and curriculum in innovative ways and to challenge them to embrace diversity and change. This paper outlines the key features of the Middle Years of Schooling Dual Degree, identifying a number of innovative approaches to pre-service teacher education.
Resumo:
With the global tertiary education environment undergoing some of the most rapid changes it has experienced since the 1980s, a technology-driven new millennium is requiring an unprecedented capacity for change on a number of fronts, one of these being the way managers manage. This article discusses some of the new realities facing tertiary education organizations, one of which is a realization that "knowledge capital" is the lifeline of an organization. It ultimately vests in the people whom successful organizations will lead, motivate, develop, and value in a manner sensitive to global trends of convergent social, cultural, and organizational change. This article suggests that the effective leadership of people will return as the touchstone for success, the technological age notwithstanding, and notes recent theory on increased reliance upon organizational integrity in the form of value-based policy and practice. This article draws on management and futurist theory to suggest some of the "flexibility imperatives" in managing the potentially different-looking work force of the future.
Resumo:
‘Stepping out into the real world of Education’ has been written to complement ‘Transitioning to the real world of Education’ (Millwater & Beutel, 2008). Both books are aimed at strategising the transition you are experiencing, from preservice teacher to professional educator, through issues that you will face as early career teachers from any specialist teaching strand - early childhood, primary, middle or secondary. ‘Transitioning to the real world of Education’ (Millwater & Beutel, 2008) addressed the particularities and practicalities of professional standards, life-long learning, teaching for diversity, values-education, teacher/student relationships, teaching in a digital age and teacher burnout. This text aligns with these and explores other areas, in recognition that your early career phase is the pivotal point of how much you commit to being a teacher in the long term.
Resumo:
The PISA assessment instruments for students’ scientific literacy in 2000, 2003 and 2006 have each consisted of units made up of a real world context involving Science and Technology, about which students are asked a number of cognitive and affective questions. This paper discusses a number of issues from this use of S&T contexts in PISA and the implications they have for the current renewed interest in context-based science education. Suitably chosen contexts can engage both boys and girls. Secondary analyses of the students’ responses using the contextual sets of items as the unit of analysis provides new information about the levels of performance in PISA 2006 Science. .Embedding affective items in the achievement test did not lead to gender/context interactions of significance, and context interactions were less than competency ones. A number of implications for context-based science teaching and learning are outlined and the PISA 2006 Science test is suggested as a model for its assessment.
Resumo:
This document reports on the Innovations Working Group that met at the 10th International Conference “Models in Developing Mathematics Education” from the 11-17th September 2009 in Dresden, Saxony. It briefly describes the over arching and consistent themes that emerged from the numerous papers presented. The authors and titles of each of the papers presented will be listed in Table 2.
Resumo:
This abstract is a preliminary discussion of the importance of blending of Indigenous cultural knowledges with mainstream knowledges of mathematics for supporting Indigenous young people. This import is emphasised in the documents Preparing the Ground for Partnership (Priest, 2005), The Indigenous Education Strategic Directions 2008–2011 (Department of Education, Training and the Arts, 2007) and the National Goals for Indigenous Education (Department of Education, Employment and Work Relations, 2008). These documents highlight the contextualising of literacy and numeracy to students’ community and culture (see Priest, 2005). Here, Community describes “a culture that is oriented primarily towards the needs of the group. Martin Nakata (2007) describes contextualising to culture as about that which already exists, that is, Torres Strait Islander community, cultural context and home languages (Nakata, 2007, p. 2). Continuing, Ezeife (2002) cites Hollins (1996) in stating that Indigenous people belong to “high-context culture groups” (p. 185). That is, “high-context cultures are characterized by a holistic (top-down) approach to information processing in which meaning is “extracted” from the environment and the situation. Low-context cultures use a linear, sequential building block (bottom-up) approach to information processing in which meaning is constructed” (p.185). In this regard, students who use holistic thought processing are more likely to be disadvantaged in mainstream mathematics classrooms. This is because Westernised mathematics is presented as broken into parts with limited connections made between concepts and with the students’ culture. It potentially conflicts with how they learn. If this is to change the curriculum needs to be made more culture-sensitive and community orientated so that students know and understand what they are learning and for what purposes.
Resumo:
For a number of years now it has been evident that the major issue facing science educators in the more developed countries of the world is the quantitative decline in enrolments in the senior secondary sciences, particularly the physical sciences, and in the number of higher achieving students applying for places in universities to undertake further studies in science. The deep malaise in school science to which these quantitative measures point has been elucidated by more qualitative studies of the students’ experience of studying science in secondary school in several of these countries (Sweden, Lindahl (2003); England, Simon and Osborne (2002); and Australia, Lyons (2005)). Remarkably concordant descriptions of these experiences can be summarized as: School science is: • transmission of knowledge from the teacher or the textbook to the students. • about content that is irrelevant and boring to our lives. • difficult to learn in comparison with other subjects Incidentally, the Australian study only involved consistently high achieving students; but even so, most of them found science more difficult than other more interesting subjects, and concluded that further science studies should be avoided unless they were needed for some career purpose. Other more representative confirmations of negative evaluations of the science curricula across Australia (and in particular states) are now available in Australia, from the large scale reviews of Goodrum, Hackling and Rennie (2001) and from the TIMSS (2002). The former reported that well under half of secondary students find the science at school relevant to my future, useful ion everyday life, deals with things I am concerned with and helps me make decisions about my health.. TIMSS found that 62 and 65 % of females and males in Year 4 agree with I like learning science, but by Year 8 only 26 and 33 % still agree. Students in Japan have been doubly notably because of (a) their high performance in international measures of science achievement like TIMSS and PISA and (b) their very low response to items in these studies which relate to interest in science. Ogura (2003) reported an intra-national study of students across Years 6-9 (upper primary through Junior High); interest in a range of their subjects (including science) that make up that country’s national curriculum. There was a steady decline in interest in all these subjects which might have indicated an adolescent reaction against schooling generally. However, this study went on to ask the students a further question that is very meaningful in the Japanese context, If you discount the importance of this subject for university entrance, is it worth studying? Science and mathematics remained in decline while all the other subjects were seen more positively. It is thus ironic, at a time when some innovations in curriculum and other research-based findings are suggesting ways that these failures of school science might be corrected, to find school science under a new demands that come from quite outside science education, and which certainly do not have the correction of this malaise as a priority. The positive curricular and research findings can be characterized as moves from within science education, whereas the new demands are moves that come from without science education. In this paper I set out these two rather contrary challenges to the teaching of science as it is currently practised, and go on to suggest a way forward that could fruitfully combine the two.
Resumo:
This abstract provides a preliminary discussion of the importance of recognising Torres Strait Islander knowledges and home languages of mathematics education. It stems from a project involving Torres Strait Islander Teachers and Teacher Aides and university based researchers who are working together to enhance the mathematics learning of students from Years 4-9. A key focus of the project is that mathematics is relevant and provides students with opportunities for further education, training and employment. Veronica Arbon (2008) questions the assumptions underpinning Western mainstream education as beneficial for Aboriginal and Torres Strait Islander people which assumes that it enables them to better participate in Australian society. She asks “how de we best achieve outcomes for and with Indigenous people conducive to our cultural, physical and economic sustainability as defined by us from Indigenous knowledge positions?” (p. 118). How does a mainstream education written to English conventions provide students with the knowledge and skills to participate in daily life, if it does not recognise the cultural identity of Indigenous students as it should (Priest, 2005; cf. Schnukal, 2003)? Arbon (2008) states that this view is now brought into question with calls for both ways education where mainstream knowledge and practices is blended with Indigenous cultural knowledges of learning. This project considers as crucial that cultural knowledges and experiences of Indigenous people to be valued and respected and given the currency in the same way that non Indigenous knowledge is (Taylor, 2003) for both ways education to work.
Resumo:
The English examination system provides a market in which a limited number of providers are accredited to offer curriculum-based examinations in many subject areas and at several levels. The most significant are the General Certificate of Secondary Education (GCSE) and the General Certificate of Education, Advanced (A level). Because these examinations are used for high-stakes purposes, including higher education and employment selection for individuals and programme evaluation for institutions, it is desired that scores from various exams be ‘comparable’ in several respects: across syllabuses and examination boards within a subject area, across years, and even across subject areas. Just how to accomplish this goal has been a topic of continual research and debate for over 50 years, through many changes of examination and institutional structures. But ever year, tens of thousands of scores must be reported, and every year, users expect them to ‘be comparable’ and use them as if they are.