98 resultados para Chance-constrained programming
Resumo:
It is acknowledged around the world that many university students struggle with learning to program (McCracken et al., 2001; McGettrick et al., 2005). In this paper, we describe how we have developed a research programme to systematically study and incrementally improve our teaching. We have adopted a research programme with three elements: (1) a theory that provides an organising framework for defining the type of phenomena and data of interest, (2) data on how the class as a whole performs on formative assessment tasks that are framed from within the organising framework, and (3) data from one-on-one think aloud sessions, to establish why students struggle with some of those in-class formative assessment tasks. We teach introductory computer programming, but this three-element structure of our research is applicable to many areas of engineering education research.
Resumo:
Student performance on examinations is influenced by the level of difficulty of the questions. It seems reasonable to propose therefore that assessment of the difficulty of exam questions could be used to gauge the level of skills and knowledge expected at the end of a course. This paper reports the results of a study investigating the difficulty of exam questions using a subjective assessment of difficulty and a purpose-built exam question complexity classification scheme. The scheme, devised for exams in introductory programming courses, assesses the complexity of each question using six measures: external domain references, explicitness, linguistic complexity, conceptual complexity, length of code involved in the question and/or answer, and intellectual complexity (Bloom level). We apply the scheme to 20 introductory programming exam papers from five countries, and find substantial variation across the exams for all measures. Most exams include a mix of questions of low, medium, and high difficulty, although seven of the 20 have no questions of high difficulty. All of the complexity measures correlate with assessment of difficulty, indicating that the difficulty of an exam question relates to each of these more specific measures. We discuss the implications of these findings for the development of measures to assess learning standards in programming courses.
Resumo:
Recent research has proposed Neo-Piagetian theory as a useful way of describing the cognitive development of novice programmers. Neo-Piagetian theory may also be a useful way to classify materials used in learning and assessment. If Neo-Piagetian coding of learning resources is to be useful then it is important that practitioners can learn it and apply it reliably. We describe the design of an interactive web-based tutorial for Neo-Piagetian categorization of assessment tasks. We also report an evaluation of the tutorial's effectiveness, in which twenty computer science educators participated. The average classification accuracy of the participants on each of the three Neo-Piagetian stages were 85%, 71% and 78%. Participants also rated their agreement with the expert classifications, and indicated high agreement (91%, 83% and 91% across the three Neo-Piagetian stages). Self-rated confidence in applying Neo-Piagetian theory to classifying programming questions before and after the tutorial were 29% and 75% respectively. Our key contribution is the demonstration of the feasibility of the Neo-Piagetian approach to classifying assessment materials, by demonstrating that it is learnable and can be applied reliably by a group of educators. Our tutorial is freely available as a community resource.
Resumo:
This paper considers the problem of reconstructing the motion of a 3D articulated tree from 2D point correspondences subject to some temporal prior. Hitherto, smooth motion has been encouraged using a trajectory basis, yielding a hard combinatorial problem with time complexity growing exponentially in the number of frames. Branch and bound strategies have previously attempted to curb this complexity whilst maintaining global optimality. However, they provide no guarantee of being more efficient than exhaustive search. Inspired by recent work which reconstructs general trajectories using compact high-pass filters, we develop a dynamic programming approach which scales linearly in the number of frames, leveraging the intrinsically local nature of filter interactions. Extension to affine projection enables reconstruction without estimating cameras.
Resumo:
User interfaces for source code editing are a crucial component in any software development environment, and in many editors visual annotations (overlaid on the textual source code) are used to provide important contextual information to the programmer. This paper focuses on the real-time programming activity of ‘cyberphysical’ programming, and considers the type of visual annotations which may be helpful in this programming context.
Resumo:
Evidence suggests that both nascent and young firms (henceforth: “new firms”)—despite typically being small and resource-constrained—are sometimes able to innovate effectively. Such firms are seldom able to invest in lengthy and expensive development processes, which suggests that they may frequently rely instead on other pathways to generate innovativeness within the firm. In this paper, we develop and test arguments that “bricolage,” defined as making do by applying combinations of the resources at hand to new problems and opportunities, provides an important pathway to achieve innovation for new resource-constrained firms. Through bricolage, resource-constrained firms engage in the processes of “recombination” that are core to creating innovative outcomes. Based on a large longitudinal dataset, our results suggest that variations in the degree to which firms engage in bricolage behaviors can provide a broadly applicable explanation of innovativeness under resource constraints by new firms. We find no general support for our competing hypothesis that the positive effects may level off or even turn negative at high levels of bricolage..
Resumo:
This special issue of the Journal of Urban Technology brings together five articles that are based on presentations given at the Street Computing Workshop held on 24 November 2009 in Melbourne in conjunction with the Australian Computer- Human Interaction conference (OZCHI 2009). Our own article introduces the Street Computing vision and explores the potential, challenges, and foundations of this research trajectory. In order to do so, we first look at the currently available sources of information and discuss their link to existing research efforts. Section 2 then introduces the notion of Street Computing and our research approach in more detail. Section 3 looks beyond the core concept itself and summarizes related work in this field of interest. We conclude by introducing the papers that have been contributed to this special issue.
Resumo:
In this research paper, we study a simple programming problem that only requires knowledge of variables and assignment statements, and yet we found that some early novice programmers had difficulty solving the problem. We also present data from think aloud studies which demonstrate the nature of those difficulties. We interpret our data within a neo-Piagetian framework which describes cognitive developmental stages through which students pass as they learn to program. We describe in detail think aloud sessions with novices who reason at the neo-Piagetian preoperational level. Those students exhibit two problems. First, they focus on very small parts of the code and lose sight of the "big picture". Second, they are prone to focus on superficial aspects of the task that are not functionally central to the solution. It is not until the transition into the concrete operational stage that decentration of focus occurs, and they have the cognitive ability to reason about abstract quantities that are conserved, and are equipped to adapt skills to closely related tasks. Our results, and the neo-Piagetian framework on which they are based, suggest that changes are necessary in teaching practice to better support novices who have not reached the concrete operational stage.
Resumo:
To enhance the performance of the k-nearest neighbors approach in forecasting short-term traffic volume, this paper proposed and tested a two-step approach with the ability of forecasting multiple steps. In selecting k-nearest neighbors, a time constraint window is introduced, and then local minima of the distances between the state vectors are ranked to avoid overlappings among candidates. Moreover, to control extreme values’ undesirable impact, a novel algorithm with attractive analytical features is developed based on the principle component. The enhanced KNN method has been evaluated using the field data, and our comparison analysis shows that it outperformed the competing algorithms in most cases.
Resumo:
This paper presents a new method to determine feeder reconfiguration scheme considering variable load profile. The objective function consists of system losses, reliability costs and also switching costs. In order to achieve an optimal solution the proposed method compares these costs dynamically and determines when and how it is reasonable to have a switching operation. The proposed method divides a year into several equal time periods, then using particle swarm optimization (PSO), optimal candidate configurations for each period are obtained. System losses and customer interruption cost of each configuration during each period is also calculated. Then, considering switching cost from a configuration to another one, dynamic programming algorithm (DPA) is used to determine the annual reconfiguration scheme. Several test systems were used to validate the proposed method. The obtained results denote that to have an optimum solution it is necessary to compare operation costs dynamically.
Resumo:
In this paper, we address the control design problem of positioning of over-actuated marine vehicles with control allocation. The proposed design is based on a combined position and velocity loops in a multi-variable anti-windup implementation together with a control allocation mapping. The vehicle modelling is considered with appropriate simplifications related to low-speed manoeuvring hydrodynamics and vehicle symmetry. The control design is considered together with a control allocation mapping. We derive analytical tuning rules based on requirements of closed-loop stability and performance. The anti- windup implementation of the controller is obtained by mapping the actuator-force constraint set into a constraint set for the generalized forces. This approach ensures that actuation capacity is not violated by constraining the generalized control forces; thus, the control allocation is simplified since it can be formulated as an unconstrained problem. The mapping can also be modified on-line based on actuator availability to provide actuator-failure accommodation. We provide a proof of the closed-loop stability and illustrate the performance using simulation scenarios for an open-frame underwater vehicle.
Resumo:
An ubiquitous problem in control system design is that the system must operate subject to various constraints. Although the topic of constrained control has a long history in practice, there have been recent significant advances in the supporting theory. In this chapter, we give an introduction to constrained control. In particular, we describe contemporary work which shows that the constrained optimal control problem for discrete-time systems has an interesting geometric structure and a simple local solution. We also discuss issues associated with the output feedback solution to this class of problems, and the implication of these results in the closely related problem of anti-windup. As an application, we address the problem of rudder roll stabilization for ships.
Resumo:
In moderate to high sea states, the effectiveness of ship fin stabilizers can severely deteriorate due to nonlinear effects arising from unsteady hydrodynamic characteristics of the fins: dynamic stall. These nonlinear effects take the form of a hysteresis, and they become very significant when the effective angle of attack of the fins exceeds a certain threshold angle. Dynamic stall can result in a complete loss of control action depending on how much the fins exceed the threshold angle. When this is detected, it is common to reduce the gain of the controller that commands the fins. This approach is cautious and tends to reduce performance when the conditions leading to dynamic stall disappear. An alternative approach for preventing the effects while keeping high performance, consists of estimating the effective angle of attack and set a conservative constraint on it as part of the control objectives. In this paper, we investigate the latter approach, and propose the use of a model predictive control (MPC) to prevent the development of these nonlinear effects by considering constraints on both the mechanical angle of the fins and the effective angle of attack.
Resumo:
We address the problem of finite horizon optimal control of discrete-time linear systems with input constraints and uncertainty. The uncertainty for the problem analysed is related to incomplete state information (output feedback) and stochastic disturbances. We analyse the complexities associated with finding optimal solutions. We also consider two suboptimal strategies that could be employed for larger optimization horizons.