219 resultados para CURVA DE PHILLIPS
Resumo:
Sequence data often have competing signals that are detected by network programs or Lento plots. Such data can be formed by generating sequences on more than one tree, and combining the results, a mixture model. We report that with such mixture models, the estimates of edge (branch) lengths from maximum likelihood (ML) methods that assume a single tree are biased. Based on the observed number of competing signals in real data, such a bias of ML is expected to occur frequently. Because network methods can recover competing signals more accurately, there is a need for ML methods allowing a network. A fundamental problem is that mixture models can have more parameters than can be recovered from the data, so that some mixtures are not, in principle, identifiable. We recommend that network programs be incorporated into best practice analysis, along with ML and Bayesian trees.
Resumo:
The semiaquatic platypus and terrestrial echidnas (spiny anteaters) are the only living egg-laying mammals (monotremes). The fossil record has provided few clues as to their origins and the evolution of their ecological specializations; however, recent reassignment of the Early Cretaceous Teinolophos and Steropodon to the platypus lineage implies that platypuses and echidnas diverged >112.5 million years ago, reinforcing the notion of monotremes as living fossils. This placement is based primarily on characters related to a single feature, the enlarged mandibular canal, which supplies blood vessels and dense electrosensory receptors to the platypus bill. Our reevaluation of the morphological data instead groups platypus and echidnas to the exclusion of Teinolophos and Steropodon and suggests that an enlarged mandibular canal is ancestral for monotremes (partly reversed in echidnas, in association with general mandibular reduction). A multigene evaluation of the echidna–platypus divergence using both a relaxed molecular clock and direct fossil calibrations reveals a recent split of 19–48 million years ago. Platypus-like monotremes (Monotrematum) predate this divergence, indicating that echidnas had aquatically foraging ancestors that reinvaded terrestrial ecosystems. This ecological shift and the associated radiation of echidnas represent a recent expansion of niche space despite potential competition from marsupials. Monotremes might have survived the invasion of marsupials into Australasia by exploiting ecological niches in which marsupials are restricted by their reproductive mode. Morphology, ecology, and molecular biology together indicate that Teinolophos and Steropodon are basal monotremes rather than platypus relatives, and that living monotremes are a relatively recent radiation.
Resumo:
The estimation of phylogenetic divergence times from sequence data is an important component of many molecular evolutionary studies. There is now a general appreciation that the procedure of divergence dating is considerably more complex than that initially described in the 1960s by Zuckerkandl and Pauling (1962, 1965). In particular, there has been much critical attention toward the assumption of a global molecular clock, resulting in the development of increasingly sophisticated techniques for inferring divergence times from sequence data. In response to the documentation of widespread departures from clocklike behavior, a variety of local- and relaxed-clock methods have been proposed and implemented. Local-clock methods permit different molecular clocks in different parts of the phylogenetic tree, thereby retaining the advantages of the classical molecular clock while casting off the restrictive assumption of a single, global rate of substitution (Rambaut and Bromham 1998; Yoder and Yang 2000).
Resumo:
Despite recent methodological advances in inferring the time-scale of biological evolution from molecular data, the fundamental question of whether our substitution models are sufficiently well specified to accurately estimate branch-lengths has received little attention. I examine this implicit assumption of all molecular dating methods, on a vertebrate mitochondrial protein-coding dataset. Comparison with analyses in which the data are RY-coded (AG → R; CT → Y) suggests that even rates-across-sites maximum likelihood greatly under-compensates for multiple substitutions among the standard (ACGT) NT-coded data, which has been subject to greater phylogenetic signal erosion. Accordingly, the fossil record indicates that branch-lengths inferred from the NT-coded data translate into divergence time overestimates when calibrated from deeper in the tree. Intriguingly, RY-coding led to the opposite result. The underlying NT and RY substitution model misspecifications likely relate respectively to “hidden” rate heterogeneity and changes in substitution processes across the tree, for which I provide simulated examples. Given the magnitude of the inferred molecular dating errors, branch-length estimation biases may partly explain current conflicts with some palaeontological dating estimates.
Resumo:
We report three developments toward resolving the challenge of the apparent basal polytomy of neoavian birds. First, we describe improved conditional down-weighting techniques to reduce noise relative to signal for deeper divergences and find increased agreement between data sets. Second, we present formulae for calculating the probabilities of finding predefined groupings in the optimal tree. Finally, we report a significant increase in data: nine new mitochondrial (mt) genomes (the dollarbird, New Zealand kingfisher, great potoo, Australian owlet-nightjar, white-tailed trogon, barn owl, a roadrunner [a ground cuckoo], New Zealand long-tailed cuckoo, and the peach-faced lovebird) and together they provide data for each of the six main groups of Neoaves proposed by Cracraft J (2001). We use his six main groups of modern birds as priors for evaluation of results. These include passerines, cuckoos, parrots, and three other groups termed “WoodKing” (woodpeckers/rollers/kingfishers), “SCA” (owls/potoos/owlet-nightjars/hummingbirds/swifts), and “Conglomerati.” In general, the support is highly significant with just two exceptions, the owls move from the “SCA” group to the raptors, particularly accipitrids (buzzards/eagles) and the osprey, and the shorebirds may be an independent group from the rest of the “Conglomerati”. Molecular dating mt genomes support a major diversification of at least 12 neoavian lineages in the Late Cretaceous. Our results form a basis for further testing with both nuclear-coding sequences and rare genomic changes.
Resumo:
Ratites are large, flightless birds and include the ostrich, rheas, kiwi, emu, and cassowaries, along with extinct members, such as moa and elephant birds. Previous phylogenetic analyses of complete mitochondrial genome sequences have reinforced the traditional belief that ratites are monophyletic and tinamous are their sister group. However, in these studies ratite monophyly was enforced in the analyses that modeled rate heterogeneity among variable sites. Relaxing this topological constraint results in strong support for the tinamous (which fly) nesting within ratites. Furthermore, upon reducing base compositional bias and partitioning models of sequence evolution among protein codon positions and RNA structures, the tinamou–moa clade grouped with kiwi, emu, and cassowaries to the exclusion of the successively more divergent rheas and ostrich. These relationships are consistent with recent results from a large nuclear data set, whereas our strongly supported finding of a tinamou–moa grouping further resolves palaeognath phylogeny. We infer flight to have been lost among ratites multiple times in temporally close association with the Cretaceous–Tertiary extinction event. This circumvents requirements for transient microcontinents and island chains to explain discordance between ratite phylogeny and patterns of continental breakup. Ostriches may have dispersed to Africa from Eurasia, putting in question the status of ratites as an iconic Gondwanan relict taxon. [Base composition; flightless; Gondwana; mitochondrial genome; Palaeognathae; phylogeny; ratites.]
Resumo:
The ratite moa (Aves: Dinornithiformes) were a speciose group of massive graviportal avian herbivores that dominated the New Zealand (NZ) ecosystem until their extinction �600 years ago. The phylogeny and evolutionary history of this morphologically diverse order has remained controversial since their initial description in 1839. We synthesize mitochondrial phylogenetic information from 263 subfossil moa specimens from across NZ with morphological, ecological, and new geological data to create the first comprehensive phylogeny, taxonomy, and evolutionary timeframe for all of the species of an extinct order. We also present an important new geological/paleogeographical model of late Cenozoic NZ, which suggests that terrestrial biota on the North and South Island landmasses were isolated for most of the past 20–30 Ma. The data reveal that the patterns of genetic diversity within and between differentmoaclades reflect a complex history following a major marine transgression in the Oligocene, affected by marine barriers, tectonic activity, and glacial cycles. Surprisingly, the remarkable morphological radiation of moa appears to have occurred much more recently than previous early Miocene (ca. 15 Ma) estimates, and was coincident with the accelerated uplift of the Southern Alps just ca. 5–8.5 Ma. Together with recent fossil evidence, these data suggest that the recent evolutionary history of nearly all of the iconic NZ terrestrial biota occurred principally on just the South Island.
Resumo:
Cockatoos are the distinctive family Cacatuidae, a major lineage of the order of parrots (Psittaciformes) and distributed throughout the Australasian region of the world. However, the evolutionary history of cockatoos is not well understood. We investigated the phylogeny of cockatoos based on three mitochondrial and three nuclear DNA genes obtained from 16 of 21 species of Cacatuidae. In addition, five novel mitochondrial genomes were used to estimate time of divergence and our estimates indicate Cacatuidae diverged from Psittacidae approximately 40.7 million years ago (95% CI 51.6–30.3 Ma) during the Eocene. Our data shows Cacatuidae began to diversify approximately 27.9 Ma (95% CI 38.1–18.3 Ma) during the Oligocene. The early to middle Miocene (20–10 Ma) was a significant period in the evolution of modern Australian environments and vegetation, in which a transformation from mainly mesic to xeric habitats (e.g., fire-adapted sclerophyll vegetation and grasslands) occurred. We hypothesize that this environmental transformation was a driving force behind the diversification of cockatoos. A detailed multi-locus molecular phylogeny enabled us to resolve the phylogenetic placements of the Palm Cockatoo (Probosciger aterrimus), Galah (Eolophus roseicapillus), Gang-gang Cockatoo (Callocephalon fimbriatum) and Cockatiel (Nymphicus hollandicus), which have historically been difficult to place within Cacatuidae. When the molecular evidence is analysed in concert with morphology, it is clear that many of the cockatoo species’ diagnostic phenotypic traits such as plumage colour, body size, wing shape and bill morphology have evolved in parallel or convergently across lineages.
Resumo:
Background Evolutionary biologists are often misled by convergence of morphology and this has been common in the study of bird evolution. However, the use of molecular data sets have their own problems and phylogenies based on short DNA sequences have the potential to mislead us too. The relationships among clades and timing of the evolution of modern birds (Neoaves) has not yet been well resolved. Evidence of convergence of morphology remain controversial. With six new bird mitochondrial genomes (hummingbird, swift, kagu, rail, flamingo and grebe) we test the proposed Metaves/Coronaves division within Neoaves and the parallel radiations in this primary avian clade. Results Our mitochondrial trees did not return the Metaves clade that had been proposed based on one nuclear intron sequence. We suggest that the high number of indels within the seventh intron of the β-fibrinogen gene at this phylogenetic level, which left a dataset with not a single site across the alignment shared by all taxa, resulted in artifacts during analysis. With respect to the overall avian tree, we find the flamingo and grebe are sister taxa and basal to the shorebirds (Charadriiformes). Using a novel site-stripping technique for noise-reduction we found this relationship to be stable. The hummingbird/swift clade is outside the large and very diverse group of raptors, shore and sea birds. Unexpectedly the kagu is not closely related to the rail in our analysis, but because neither the kagu nor the rail have close affinity to any taxa within this dataset of 41 birds, their placement is not yet resolved. Conclusion Our phylogenetic hypothesis based on 41 avian mitochondrial genomes (13,229 bp) rejects monophyly of seven Metaves species and we therefore conclude that the members of Metaves do not share a common evolutionary history within the Neoaves.
Resumo:
Background The genus Rattus is highly speciose and has a complex taxonomy that is not fully resolved. As shown previously there are two major groups within the genus, an Asian and an Australo-Papuan group. This study focuses on the Australo-Papuan group and particularly on the Australian rats. There are uncertainties regarding the number of species within the group and the relationships among them. We analysed 16 mitochondrial genomes, including seven novel genomes from six species, to help elucidate the evolutionary history of the Australian rats. We also demonstrate, from a larger dataset, the usefulness of short regions of the mitochondrial genome in identifying these rats at the species level. Results Analyses of 16 mitochondrial genomes representing species sampled from Australo-Papuan and Asian clades of Rattus indicate divergence of these two groups ~2.7 million years ago (Mya). Subsequent diversification of at least 4 lineages within the Australo-Papuan clade was rapid and occurred over the period from ~ 0.9-1.7 Mya, a finding that explains the difficulty in resolving some relationships within this clade. Phylogenetic analyses of our 126 taxon, but shorter sequence (1952 nucleotides long), Rattus database generally give well supported species clades. Conclusions Our whole mitochondrial genome analyses are concordant with a taxonomic division that places the native Australian rats into the Rattus fuscipes species group. We suggest the following order of divergence of the Australian species. R. fuscipes is the oldest lineage among the Australian rats and is not part of a New Guinean radiation. R. lutreolus is also within this Australian clade and shallower than R. tunneyi while the R. sordidus group is the shallowest lineage in the clade. The divergences within the R. sordidus and R. leucopus lineages occurring about half a million years ago support the hypotheses of more recent interchanges of rats between Australia and New Guinea. While problematic for inference of deeper divergences, we report that the analysis of shorter mitochondrial sequences is very useful for species identification in rats.
Resumo:
The opening phrase of the title is from Charles Darwin’s notebooks (Schweber 1977). It is a double reminder, firstly that mainstream evolutionary theory is not just about describing nature but is particularly looking for mechanisms or ‘causes’, and secondly, that there will usually be several causes affecting any particular outcome. The second part of the title is our concern at the almost universal rejection of the idea that biological mechanisms are sufficient for macroevolutionary changes, thus rejecting a cornerstone of Darwinian evolutionary theory. Our primary aim here is to consider ways of making it easier to develop and to test hypotheses about evolution. Formalizing hypotheses can help generate tests. In an absolute sense, some of the discussion by scientists about evolution is little better than the lack of reasoning used by those advocating intelligent design. Our discussion here is in a Popperian framework where science is defined by that area of study where it is possible, in principle, to find evidence against hypotheses – they are in principle falsifiable. However, with time, the boundaries of science keep expanding. In the past, some aspects of evolution were outside the current boundaries of falsifiable science, but increasingly new techniques and ideas are expanding the boundaries of science and it is appropriate to re-examine some topics. It often appears that over the last few decades there has been an increasingly strong assumption to look first (and only) for a physical cause. This decision is virtually never formally discussed, just an assumption is made that some physical factor ‘drives’ evolution. It is necessary to examine our assumptions much more carefully. What is meant by physical factors ‘driving’ evolution, or what is an ‘explosive radiation’. Our discussion focuses on two of the six mass extinctions, the fifth being events in the Late Cretaceous, and the sixth starting at least 50,000 years ago (and is ongoing). Cretaceous/Tertiary boundary; the rise of birds and mammals. We have had a long-term interest (Cooper and Penny 1997) in designing tests to help evaluate whether the processes of microevolution are sufficient to explain macroevolution. The real challenge is to formulate hypotheses in a testable way. For example the numbers of lineages of birds and mammals that survive from the Cretaceous to the present is one test. Our first estimate was 22 for birds, and current work is tending to increase this value. This still does not consider lineages that survived into the Tertiary, and then went extinct later. Our initial suggestion was probably too narrow in that it lumped four models from Penny and Phillips (2004) into one model. This reduction is too simplistic in that we need to know about survival and ecological and morphological divergences during the Late Cretaceous, and whether Crown groups of avian or mammalian orders may have existed back into the Cretaceous. More recently (Penny and Phillips 2004) we have formalized hypotheses about dinosaurs and pterosaurs, with the prediction that interactions between mammals (and groundfeeding birds) and dinosaurs would be most likely to affect the smallest dinosaurs, and similarly interactions between birds and pterosaurs would particularly affect the smaller pterosaurs. There is now evidence for both classes of interactions, with the smallest dinosaurs and pterosaurs declining first, as predicted. Thus, testable models are now possible. Mass extinction number six: human impacts. On a broad scale, there is a good correlation between time of human arrival, and increased extinctions (Hurles et al. 2003; Martin 2005; Figure 1). However, it is necessary to distinguish different time scales (Penny 2005) and on a finer scale there are still large numbers of possibilities. In Hurles et al. (2003) we mentioned habitat modification (including the use of Geogenes III July 2006 31 fire), introduced plants and animals (including kiore) in addition to direct predation (the ‘overkill’ hypothesis). We need also to consider prey switching that occurs in early human societies, as evidenced by the results of Wragg (1995) on the middens of different ages on Henderson Island in the Pitcairn group. In addition, the presence of human-wary or humanadapted animals will affect the distribution in the subfossil record. A better understanding of human impacts world-wide, in conjunction with pre-scientific knowledge will make it easier to discuss the issues by removing ‘blame’. While continued spontaneous generation was accepted universally, there was the expectation that animals continued to reappear. New Zealand is one of the very best locations in the world to study many of these issues. Apart from the marine fossil record, some human impact events are extremely recent and the remains less disrupted by time.
Resumo:
The new model of North Island Cenozoic palaeogeography developed by Kamp et al. has a range of important implications for the evolution of New Zealand terrestrial taxa over the past 30 Ma. Key aspects include the prolonged isolation of the biota on the North Island landmass from the larger and more diverse greater South Island, and the founding of North Island taxa from the potentially unusual ecosystem of a small island around Northland. The prolonged period of isolation is expected to have generated deep phylogenetic splits within taxa present on both islands, and an important current aim should be to identify such signals in surviving endemics to start building a picture of the historical phylogeography, and inferred ecology of both islands through the Cenozoic. Given the potential differences in founding terrestrial species and climatic conditions, it seems likely that the ecology may have been very diferent between the North and South Islands. New genetic data from the 10 or so species of extinct moa suggest that the radiation of moa was much more recent than previously suggested, and reveals a complex pattern that is inferred to result from the interplay of the Cenozoic biogeography, marine barriers, and glacial cycles.
Resumo:
Although the demand for pre-service teachers to be better informed about Indigenous issues in Australia has been broadly articulated, it is reasonably new for universities to make Indigenous studies a compulsory area of study, or to define what is meant by 'Indigenous education'. This book was motivated by the growing necessity for an approach to Indigenous education that would include more than just a summarising of Indigenous history and traditional culture. It is useful for anyone with an interest in challenging their ideas about culture, identity and history in Australia.