81 resultados para Bivariate correlation
Resumo:
Background To date, no genome-wide association study (GWAS) has considered the combined phenotype of asthma with hay fever. Previous analyses of family data from the Tasmanian Longitudinal Health Study provide evidence that this phenotype has a stronger genetic cause than asthma without hay fever. Objective We sought to perform a GWAS of asthma with hay fever to identify variants associated with having both diseases. Methods We performed a meta-analysis of GWASs comparing persons with both physician-diagnosed asthma and hay fever (n = 6,685) with persons with neither disease (n = 14,091). Results At genome-wide significance, we identified 11 independent variants associated with the risk of having asthma with hay fever, including 2 associations reaching this level of significance with allergic disease for the first time: ZBTB10 (rs7009110; odds ratio [OR], 1.14; P = 4 × 10−9) and CLEC16A (rs62026376; OR, 1.17; P = 1 × 10−8). The rs62026376:C allele associated with increased asthma with hay fever risk has been found to be associated also with decreased expression of the nearby DEXI gene in monocytes. The 11 variants were associated with the risk of asthma and hay fever separately, but the estimated associations with the individual phenotypes were weaker than with the combined asthma with hay fever phenotype. A variant near LRRC32 was a stronger risk factor for hay fever than for asthma, whereas the reverse was observed for variants in/near GSDMA and TSLP. Single nucleotide polymorphisms with suggestive evidence for association with asthma with hay fever risk included rs41295115 near IL2RA (OR, 1.28; P = 5 × 10−7) and rs76043829 in TNS1 (OR, 1.23; P = 2 × 10−6). Conclusion By focusing on the combined phenotype of asthma with hay fever, variants associated with the risk of allergic disease can be identified with greater efficiency.
Resumo:
Dissecting how genetic and environmental influences impact on learning is helpful for maximizing numeracy and literacy. Here we show, using twin and genome-wide analysis, that there is a substantial genetic component to children’s ability in reading and mathematics, and estimate that around one half of the observed correlation in these traits is due to shared genetic effects (so-called Generalist Genes). Thus, our results highlight the potential role of the learning environment in contributing to differences in a child’s cognitive abilities at age twelve.
Resumo:
BACKGROUND AND PURPOSE Inflammation is a recognized risk factor for the vulnerable atherosclerotic plaque. The study explores the relationship between the degree of Magnetic Resonance (MR)"defined inflammation using Ultra Small Super-Paramagnetic Iron Oxide (USPIO) particles and the severity of luminal stenosis in asymptomatic carotid plaques. METHODS Seventy-one patients with an asymptomatic carotid stenosis of ĝ‰¥40% underwent multi-sequence USPIO-enhanced MR imaging. Stenosis severity was measured according to the NASCET and ECST methods. RESULTS No demonstrable relationship between inflammation as measured by USPIO-enhanced signal change and the degree of luminal stenosis was found. CONCLUSIONS Inflammation and stenosis are likely to be independent risk factors, although this needs to be further validated.
Resumo:
Objective: The aim of this study was to explore whether there is a relationship between the degree of MR-defined inflammation using ultra small super-paramagnetic iron oxide (USPIO) particles, and biomechanical stress using finite element analysis (FEA) techniques, in carotid atheromatous plaques. Methods and Results: 18 patients with angiographically proven carotid stenoses underwent multi-sequence MR imaging before and 36 h after USPIO infusion. T2 * weighted images were manually segmented into quadrants and the signal change in each quadrant normalised to adjacent muscle was calculated after USPIO administration. Plaque geometry was obtained from the rest of the multi-sequence dataset and used within a FEA model to predict maximal stress concentration within each slice. Subsequently, a new statistical model was developed to explicitly investigate the form of the relationship between biomechanical stress and signal change. The Spearman's rank correlation coefficient for USPIO enhanced signal change and maximal biomechanical stress was -0.60 (p = 0.009). Conclusions: There is an association between biomechanical stress and USPIO enhanced MR-defined inflammation within carotid atheroma, both known risk factors for plaque vulnerability. This underlines the complex interaction between physiological processes and biomechanical mechanisms in the development of carotid atheroma. However, this is preliminary data that will need validation in a larger cohort of patients.
Resumo:
High resolution, USPIO-enhanced MR imaging can be used to identify inflamed atherosclerotic plaque. We report a case of a 79-year-old man with a symptomatic carotid stenosis of 82%. The plaque was retrieved for histology and finite element analysis (FEA) based on the preoperative MR imaging was used to predict maximal Von Mises stress on the plaque. Macrophage location correlated with maximal predicted stresses on the plaque. This supports the hypothesis that macrophages thin the fibrous cap at points of highest stress, leading to an increased risk of plaque rupture and subsequent stroke.
Resumo:
Selection criteria and misspecification tests for the intra-cluster correlation structure (ICS) in longitudinal data analysis are considered. In particular, the asymptotical distribution of the correlation information criterion (CIC) is derived and a new method for selecting a working ICS is proposed by standardizing the selection criterion as the p-value. The CIC test is found to be powerful in detecting misspecification of the working ICS structures, while with respect to the working ICS selection, the standardized CIC test is also shown to have satisfactory performance. Some simulation studies and applications to two real longitudinal datasets are made to illustrate how these criteria and tests might be useful.
Resumo:
This paper proposes a linear quantile regression analysis method for longitudinal data that combines the between- and within-subject estimating functions, which incorporates the correlations between repeated measurements. Therefore, the proposed method results in more efficient parameter estimation relative to the estimating functions based on an independence working model. To reduce computational burdens, the induced smoothing method is introduced to obtain parameter estimates and their variances. Under some regularity conditions, the estimators derived by the induced smoothing method are consistent and have asymptotically normal distributions. A number of simulation studies are carried out to evaluate the performance of the proposed method. The results indicate that the efficiency gain for the proposed method is substantial especially when strong within correlations exist. Finally, a dataset from the audiology growth research is used to illustrate the proposed methodology.
Resumo:
A modeling paradigm is proposed for covariate, variance and working correlation structure selection for longitudinal data analysis. Appropriate selection of covariates is pertinent to correct variance modeling and selecting the appropriate covariates and variance function is vital to correlation structure selection. This leads to a stepwise model selection procedure that deploys a combination of different model selection criteria. Although these criteria find a common theoretical root based on approximating the Kullback-Leibler distance, they are designed to address different aspects of model selection and have different merits and limitations. For example, the extended quasi-likelihood information criterion (EQIC) with a covariance penalty performs well for covariate selection even when the working variance function is misspecified, but EQIC contains little information on correlation structures. The proposed model selection strategies are outlined and a Monte Carlo assessment of their finite sample properties is reported. Two longitudinal studies are used for illustration.
Resumo:
Objective To discuss generalized estimating equations as an extension of generalized linear models by commenting on the paper of Ziegler and Vens "Generalized Estimating Equations. Notes on the Choice of the Working Correlation Matrix". Methods Inviting an international group of experts to comment on this paper. Results Several perspectives have been taken by the discussants. Econometricians have established parallels to the generalized method of moments (GMM). Statisticians discussed model assumptions and the aspect of missing data Applied statisticians; commented on practical aspects in data analysis. Conclusions In general, careful modeling correlation is encouraged when considering estimation efficiency and other implications, and a comparison of choosing instruments in GMM and generalized estimating equations, (GEE) would be worthwhile. Some theoretical drawbacks of GEE need to be further addressed and require careful analysis of data This particularly applies to the situation when data are missing at random.
Resumo:
Selecting an appropriate working correlation structure is pertinent to clustered data analysis using generalized estimating equations (GEE) because an inappropriate choice will lead to inefficient parameter estimation. We investigate the well-known criterion of QIC for selecting a working correlation Structure. and have found that performance of the QIC is deteriorated by a term that is theoretically independent of the correlation structures but has to be estimated with an error. This leads LIS to propose a correlation information criterion (CIC) that substantially improves the QIC performance. Extensive simulation studies indicate that the CIC has remarkable improvement in selecting the correct correlation structures. We also illustrate our findings using a data set from the Madras Longitudinal Schizophrenia Study.
Resumo:
Efficiency of analysis using generalized estimation equations is enhanced when intracluster correlation structure is accurately modeled. We compare two existing criteria (a quasi-likelihood information criterion, and the Rotnitzky-Jewell criterion) to identify the true correlation structure via simulations with Gaussian or binomial response, covariates varying at cluster or observation level, and exchangeable or AR(l) intracluster correlation structure. Rotnitzky and Jewell's approach performs better when the true intracluster correlation structure is exchangeable, while the quasi-likelihood criteria performs better for an AR(l) structure.
Resumo:
The method of generalized estimating equation-, (GEEs) has been criticized recently for a failure to protect against misspecification of working correlation models, which in some cases leads to loss of efficiency or infeasibility of solutions. However, the feasibility and efficiency of GEE methods can be enhanced considerably by using flexible families of working correlation models. We propose two ways of constructing unbiased estimating equations from general correlation models for irregularly timed repeated measures to supplement and enhance GEE. The supplementary estimating equations are obtained by differentiation of the Cholesky decomposition of the working correlation, or as score equations for decoupled Gaussian pseudolikelihood. The estimating equations are solved with computational effort equivalent to that required for a first-order GEE. Full details and analytic expressions are developed for a generalized Markovian model that was evaluated through simulation. Large-sample ".sandwich" standard errors for working correlation parameter estimates are derived and shown to have good performance. The proposed estimating functions are further illustrated in an analysis of repeated measures of pulmonary function in children.
Resumo:
The method of generalised estimating equations for regression modelling of clustered outcomes allows for specification of a working matrix that is intended to approximate the true correlation matrix of the observations. We investigate the asymptotic relative efficiency of the generalised estimating equation for the mean parameters when the correlation parameters are estimated by various methods. The asymptotic relative efficiency depends on three-features of the analysis, namely (i) the discrepancy between the working correlation structure and the unobservable true correlation structure, (ii) the method by which the correlation parameters are estimated and (iii) the 'design', by which we refer to both the structures of the predictor matrices within clusters and distribution of cluster sizes. Analytical and numerical studies of realistic data-analysis scenarios show that choice of working covariance model has a substantial impact on regression estimator efficiency. Protection against avoidable loss of efficiency associated with covariance misspecification is obtained when a 'Gaussian estimation' pseudolikelihood procedure is used with an AR(1) structure.
Resumo:
Some studies suggested that adequate vitamin D might reduce inflammation in adults. However, little is known about this association in early life. We aimed to determine the relationship between cord blood 25-hydroxyvitamin D (25(OH)D) and C-reactive protein (CRP) in neonates. Cord blood levels of 25(OH)D and CRP were measured in 1491 neonates in Hefei, China. Potential confounders including maternal sociodemographic characteristics, perinatal health status, lifestyle, and birth outcomes were prospectively collected. The average values of cord blood 25(OH)D and CRP were 39.43 nmol/L (SD = 20.35) and 6.71 mg/L (SD = 3.07), respectively. Stratified by 25(OH)D levels, per 10 nmol/L increase in 25(OH)D, CRP decreased by 1.42 mg/L (95% CI: 0.90, 1.95) among neonates with 25(OH)D <25.0 nmol/L, and decreased by 0.49 mg/L (95% CI: 0.17, 0.80) among neonates with 25(OH)D between 25.0 nmol/L and 49.9 nmol/L, after adjusting for potential confounders. However, no significant association between 25(OH)D and CRP was observed among neonates with 25(OH)D ≥50 nmol/L. Cord blood 25(OH)D and CRP levels showed a significant seasonal trend with lower 25(OH)D and higher CRP during winter-spring than summer-autumn. Stratified by season, a significant linear association of 25(OH)D with CRP was observed in neonates born in winter-spring (adjusted β = −0.11, 95% CI: −0.13, −0.10), but not summer-autumn. Among neonates born in winter-spring, neonates with 25(OH)D <25 nmol/L had higher risk of CRP ≥10 mg/L (adjusted OR = 3.06, 95% CI: 2.00, 4.69), compared to neonates with 25(OH)D ≥25 nmol/L. Neonates with vitamin D deficiency had higher risk of exposure to elevated inflammation at birth.