131 resultados para Ahmad ibn Tulun.
Resumo:
We report an efficient solar-light-driven photocatalyst based on three-dimensional nanoporous tungsten trioxide (WO3) films. These films are obtained by anodizing W foils in fluoride-containing electrolytes at room temperature and under low applied voltages with an efficient growth rate of 2 μm h− 1. The maximum thickness of the films is ~ 3 μm that exceeds those of previously reported anodized WO3 films in fluoride-containing electrolytes. By investigating the photocatalytic properties of the films with thicknesses ranging from ~ 0.5 to ~ 3 μm, the optimum thickness of the nanoporous film is found to be ~ 1 μm, which demonstrates an impressive 120% improvement in the photocatalytic performance compared to that of a RF-sputtered nanotextured film with similar weights. We mainly ascribe this to large surface area and smaller bandgap.
Resumo:
We report the influence of zinc oxide (ZnO) seed layers on the performance of ZnO-based memristive devices fabricated using an electrodeposition approach. The memristive element is based on a sandwich structure using Ag and Pt electrodes. The ZnO seed layer is employed to tune the morphology of the electrodeposited ZnO films in order to increase the grain boundary density as well as construct highly ordered arrangements of grain boundaries. Additionally, the seed layer also assists in optimizing the concentration of oxygen vacancies in the films. The fabricated devices exhibit memristive switching behaviour with symmetrical and asymmetrical hysteresis loops in the absence and presence of ZnO seed layers, respectively. A modest concentration of oxygen vacancy in electrodeposited ZnO films as well as an increase in the ordered arrangement of grain boundaries leads to higher switching ratios in Ag/ZnO/Pt devices.
Resumo:
This study reports the synthesis of extremely high aspect ratios (>3000) organic semiconductor nanowires of Ag–tetracyanoquinodimethane (AgTCNQ) on the surface of a flexible Ag fabric for the first time. These one-dimensional (1D) hybrid Ag/AgTCNQ nanostructures are attained by a facile, solution-based spontaneous reaction involving immersion of Ag fabrics in an acetonitrile solution of TCNQ. Further, it is discovered that these AgTCNQ nanowires show outstanding antibacterial performance against both Gram negative and Gram positive bacteria, which outperforms that of pristine Ag. The outcomes of this study also reflect upon a fundamentally important aspect that the antimicrobial performance of Ag-based nanomaterials may not necessarily be solely due to the amount of Ag+ ions leached from these nanomaterials, but that the nanomaterial itself may also play a direct role in the antimicrobial action. Notably, the applications of metal-organic semiconducting charge transfer complexes of metal-7,7,8,8-tetracyanoquinodimethane (TCNQ) have been predominantly restricted to electronic applications, except from our recent reports on their (photo)catalytic potential and the current case on antimicrobial prospects. This report on growth of these metal-TCNQ complexes on a fabric not only widens the window of these interesting materials for new biological applications, it also opens the possibilities for developing large-area flexible electronic devices by growing a range of metal-organic semiconducting materials directly on a fabric surface.
Resumo:
With the widespread of social media websites in the internet, and the huge number of users participating and generating infinite number of contents in these websites, the need for personalisation increases dramatically to become a necessity. One of the major issues in personalisation is building users’ profiles, which depend on many elements; such as the used data, the application domain they aim to serve, the representation method and the construction methodology. Recently, this area of research has been a focus for many researchers, and hence, the proposed methods are increasing very quickly. This survey aims to discuss the available user modelling techniques for social media websites, and to highlight the weakness and strength of these methods and to provide a vision for future work in user modelling in social media websites.
Resumo:
Different reputation models are used in the web in order to generate reputation values for products using uses' review data. Most of the current reputation models use review ratings and neglect users' textual reviews, because it is more difficult to process. However, we argue that the overall reputation score for an item does not reflect the actual reputation for all of its features. And that's why the use of users' textual reviews is necessary. In our work we introduce a new reputation model that defines a new aggregation method for users' extracted opinions about products' features from users' text. Our model uses features ontology in order to define general features and sub-features of a product. It also reflects the frequencies of positive and negative opinions. We provide a case study to show how our results compare with other reputation models.
Resumo:
In recent years, the Web 2.0 has provided considerable facilities for people to create, share and exchange information and ideas. Upon this, the user generated content, such as reviews, has exploded. Such data provide a rich source to exploit in order to identify the information associated with specific reviewed items. Opinion mining has been widely used to identify the significant features of items (e.g., cameras) based upon user reviews. Feature extraction is the most critical step to identify useful information from texts. Most existing approaches only find individual features about a product without revealing the structural relationships between the features which usually exist. In this paper, we propose an approach to extract features and feature relationships, represented as a tree structure called feature taxonomy, based on frequent patterns and associations between patterns derived from user reviews. The generated feature taxonomy profiles the product at multiple levels and provides more detailed information about the product. Our experiment results based on some popularly used review datasets show that our proposed approach is able to capture the product features and relations effectively.
Resumo:
Recently a new human authentication scheme called PAS (predicate-based authentication service) was proposed, which does not require the assistance of any supplementary device. The main security claim of PAS is to resist passive adversaries who can observe the whole authentication session between the human user and the remote server. In this paper we show that PAS is insecure against both brute force attack and a probabilistic attack. In particular, we show that its security against brute force attack was strongly overestimated. Furthermore, we introduce a probabilistic attack, which can break part of the password even with a very small number of observed authentication sessions. Although the proposed attack cannot completely break the password, it can downgrade the PAS system to a much weaker system similar to common OTP (one-time password) systems.
Resumo:
This paper treats the design and analysis of an energy absorbing system. Experimental tests were conducted on a prototype, and these tests were used to validate a finite element model of the system. The model was then used to analyze the response of the system under dynamic impact loading. The response was compared with that of a similar system consisting of straight circular tubes, empty and foam-filled conical tubes. Three types of such supplementary devices were included in the energy absorbing system to examine the crush behavior and energy absorption capacity when subjected to axial and oblique impact loadings. The findings were used to develop design guidelines and recommendations for the implementation of tapered tubes in energy absorbing systems. To this end, the system was conceptual in form such that it could be adopted for a variety of applications. Nevertheless, for convenience, the approach in this study is to treat the system as a demonstrator car bumper system used to absorb impact energy during minor frontal collisions.
Resumo:
The aim of this paper is to compare the performances of the highly porous Nb2O5 Schottky based sensors formed using different catalytic metals for ethanol vapour sensing. The fabricated sensors consist of a fairly ordered nano-vein like porous Nb2O5 prepared via an elevated temperature anodization method. Subsequently, Pt, Pd and Au were sputtered as both Schottky contacts and catalysts for the comparative studies. These metals are chosen as they have large work functions in comparison to the electron affinity of the anodized Nb2O5. It is demonstrated that the device based on Pd/Nb2O5 Schottky contact has the highest sensitivity amongst the developed sensors. The sensing behaviors were studied in terms of the Schottky barrier height variations and properties of the metal catalysts.
Resumo:
Recent literature on Enterprise System (ES) implementation projects highlights the importance of Knowledge Integration (KI) for implementation success. The fundamental characteristics of ES - integration of modules, business process view, and aspects of information transparency - necessitate that all frequent end-users share a reasonable amount of common knowledge and integrate their knowledge to yield new knowledge. Unfortunately, the importance of KI is often overlooked and little about the role of KI in ES success is known. In this chapter, the authors study the KI impact on ES success that is relevant to the ES post-implementation in support of organizations' returns on their ES investments. They adopt the ES post-implementation segment of ES utilization to explore whether the KI approach is causally linked to ES success. The research model was tested in a multi-industry sample in Malaysia from which data was gathered from managerial and operational employees spread across six large organizations. Consistent with the explanation by knowledge-based theory, the results show that KI was valid and significantly related to the outcome of ES that relates to an organization's performance, which the authors refer to as ES success. The KI positive impact on the success of ES drives one to highlight the importance of ontological KI in the complexity of the ES environment. The authors believe that focusing on an ontology through the KI perspective can make significant contributions to current ES problems.
Resumo:
This book constitutes the refereed proceedings of the 11th International Conference on Cryptology and Network Security, CANS 2012, held in Darmstadt, Germany, in December 2012. The 22 revised full papers, presented were carefully reviewed and selected from 99 submissions. The papers are organized in topical sections on cryptanalysis; network security; cryptographic protocols; encryption; and s-box theory.
Resumo:
The oxides of copper (CuxO) are fascinating materials due to their remarkable optical, electrical, thermal and magnetic properties. Nanostructuring of CuxO can further enhance the performance of this important functional material and provide it with unique properties that do not exist in its bulk form. Three distinctly different phases of CuxO, mainly CuO, Cu2O and Cu4O3, can be prepared by numerous synthesis techniques including, vapour deposition and liquid phase chemical methods. In this article, we present a review of nanostructured CuxO focusing on their material properties, methods of synthesis and an overview of various applications that have been associated with nanostructured CuxO.
Resumo:
Control and diagnostics of low-frequency (∼ 500 kHz) inductively coupled plasmas for chemical vapor deposition (CVD) of nano-composite carbon nitride-based films is reported. Relation between the discharge control parameters, plasma electron energy distribution/probability functions (EEDF/EEPF), and elemental composition in the deposited C-N based thin films is investigated. Langmuir probe technique is employed to monitor the plasma density and potential, effective electron temperature, and EEDFs/EEPFs in Ar + N2 + CH4 discharges. It is revealed that varying RF power and gas composition/pressure one can engineer the EEDFs/EEPFs to enhance the desired plasma-chemical gas-phase reactions thus controlling the film chemical structure. Auxiliary diagnostic tools for study of the RF power deposition, plasma composition, stability, and optical emission are discussed as well.
Resumo:
While organizations strive to leverage the vast information generated daily from social media platforms and both decision makers and consultants are keen to identify and exploit this information’s value, there has been little research into social media in the business context. Social media are diverse, varying in scope and functionality, this diversity entailing a complex of attributes and characteristics, resulting in confusion for both researchers and organizations. Taxonomies are important precursors in emerging fields and are foundational for rigorous theory building. Though aspects of social media have been studied from various discipline perspectives, this work has been largely descriptive. Thus, while the need for a rigorous taxonomy of social media is strong, previous efforts to classify social media suffer limitations – e.g. lack of a systematic taxonomic method, overreliance on intuition, disregard for the users’ perspective, and inadequate consideration of purpose. Thus, this study was mainly initiated by the overarching question “How can social media in the business context be usefully classified?” In order to address this gap, the current paper proposes a systematic method for developing a taxonomy appropriate to study social media in organizations context, combining Nickerson et al,’s (2012) IS taxonomy building guidelines and a Repertory grid (RepGrid) approach.
Resumo:
For Design Science Research (DSR) to gain wide credence as a research paradigm in Information Systems (IS), it must contribute to theory. “Theory cannot be improved until we improve the theorizing process, and we cannot improve the theorizing process until we describe it more explicitly, operate it more self-consciously, and decouple it from validation more deliberately” (Weick 1989, p. 516). With the aim of improved design science theorizing, we propose a DSR abstraction-layers framework that integrates, interlates, and harmonizes key methodological notions, primary of which are: 1) the Design Science (DS), Design Research (DR), and Routine Design (RD) distinction (Winter 2008); 2) Multi Grounding in IS Design Theory (ISDT) (Goldkuhl & Lind 2010); 3) the Idealized Model for Theory Development (IM4TD) (Fischer & Gregor 2011); and 4) the DSR Theorizing Framework (Lee et al. 2011). Though theorizing, or the abstraction process, has been the subject of healthy discussion in DSR, important questions remain. With most attention to date having focused on theorizing for Design Research (DR), a key stimulus of the layered view was the realization that Design Science (DS) produces abstract knowledge at a higher level of generality. The resultant framework includes four abstraction layers: (i) Design Research (DR) 1st Abstract Layer, (ii) Design Science (DS) 2nd Abstract Layer, (iii) DSR Incubation 3rd Layer, and (iv) Routine Design 4th Layer. Differentiating and inter-relating these layers will aid DSR researchers to discover, position, and amplify their DSR contributions. Additionally, consideration of the four layers can trigger creative perspectives that suggest unplanned outputs. The first abstraction layer, including its alternative patterns of activity, is well recognized in the literature. The other layers, however, are less well recognized; and the integrated representation of layers is novel.