784 resultados para statistical lip modelling
Resumo:
Conservation planning and management programs typically assume relatively homogeneous ecological landscapes. Such “ecoregions” serve multiple purposes: they support assessments of competing environmental values, reveal priorities for allocating scarce resources, and guide effective on-ground actions such as the acquisition of a protected area and habitat restoration. Ecoregions have evolved from a history of organism–environment interactions, and are delineated at the scale or level of detail required to support planning. Depending on the delineation method, scale, or purpose, they have been described as provinces, zones, systems, land units, classes, facets, domains, subregions, and ecological, biological, biogeographical, or environmental regions. In each case, they are essential to the development of conservation strategies and are embedded in government policies at multiple scales.
Resumo:
Intramedullary nailing is the standard fixation method for displaced diaphyseal fractures of the tibia. An optimal nail design should both facilitate insertion and anatomically fit the bone geometry at its final position in order to reduce the risk of stress fractures and malalignments. Due to the nonexistence of suitable commercial software, we developed a software tool for the automated fit assessment of nail designs. Furthermore, we demonstrated that an optimised nail, which fits better at the final position, is also easier to insert. Three-dimensional models of two nail designs and 20 tibiae were used. The fitting was quantified in terms of surface area, maximum distance, sum of surface areas and sum of maximum distances by which the nail was protruding into the cortex. The software was programmed to insert the nail into the bone model and to quantify the fit at defined increment levels. On average, the misfit during the insertion in terms of the four fitting parameters was smaller for the Expert Tibial Nail Proximal bend (476.3 mm2, 1.5 mm, 2029.8 mm2, 6.5 mm) than the Expert Tibial Nail (736.7 mm2, 2.2 mm, 2491.4 mm2, 8.0 mm). The differences were statistically significant (p ≤ 0.05). The software could be used by nail implant manufacturers for the purpose of implant design validation.
Resumo:
The use of GNSS tracked Lagrangian drifters allows more realistic quantification of fluid motion and dispersion coefficients than Eulerian techniques because such drifters are analogues of particles that are relevant to flow field characterisation and pollutant dispersion. Using the fast growing Real Time Kinematic (RTK) positioning technique derived from Global Satellite Navigation Systems (GNSS), drifters are developed for high frequency (10 Hz) sampling with position estimates to centimetre accuracy. The drifters are designed with small size and less direct wind drag to follow the sub-surface flow which characterizes dispersion in shallow waters. An analysis of position error from stationary observation indicates that the drifter can efficiently resolve motion up to 1 Hz. The result of the field deployments of the drifter in conjunction with acoustic Eulerian devices shows higher estimate of the drifter streamwise velocities. Single particle statistical analysis of field deployments in a shallow estuarine zone yielded dispersion coefficients estimate comparable to those of dye tracer studies. The drifters capture the tidal elevation during field studies in a tidal estuary.
Resumo:
Hybrid powerplants combining internal combustion engines and electric motor prime movers have been extensively developed for land- and marine-based transport systems. The use of such powerplants in airborne applications has been historically impractical due to energy and power density constraints. Improvements in battery and electric motor technology make aircraft hybrid powerplants feasible. This paper presents a technique for determining the feasibility and mechanical effectiveness of powerplant hybridisation. In this work, a prototype aircraft hybrid powerplant was designed, constructed and tested. It is shown that an additional 35% power can be supplied from the hybrid system with an overall weight penalty of 5%, for a given unmanned aerial system. A flight dynamic model was developed using the AeroSim Blockset in MATLAB Simulink. The results have shown that climb rates can be improved by 56% and endurance increased by 13% when using the hybrid powerplant concept.
Resumo:
Neu-Model, an ongoing project aimed at developing a neural simulation environment that is extremely computationally powerful and flexible, is described. It is shown that the use of good Software Engineering techniques in Neu-Model’s design and implementation is resulting in a high performance system that is powerful and flexible enough to allow rigorous exploration of brain function at a variety of conceptual levels.
Resumo:
In this invited paper I describe some personal views on the research field of conceptual modelling. I argue that the field has become entrenched in some “bad habits” that usually emerge in evolved paradigms and that we need to proactively pursue a dual research strategy incorporating new and different avenues that lead us to novel and impactful research contexts of conceptual modelling. I provide a framework that can guide this exploration and finish with some recommendations about how conceptual modelling research programs could proceed.
Resumo:
The 510 million year old Kalkarindji Large Igneous Province correlates in time with the first major extinction event after the Cambrian explosion of life. Large igneous provinces correlate with all major mass extinction events in the last 500 million years. The genetic link between large igneous provinces and mass extinction remains unclear. My work is a contribution towards understanding magmatic processes involved in the generation of Large Igneous Provinces. I concentrate on the origin of variation in Cr in magmas and have developed a model in which high temperature melts intrude into and assimilate large amounts of upper continental crust.
Exploring variation in measurement as a foundation for statistical thinking in the elementary school
Resumo:
This study was based on the premise that variation is the foundation of statistics and statistical investigations. The study followed the development of fourth-grade students' understanding of variation through participation in a sequence of two lessons based on measurement. In the first lesson all students measured the arm span of one student, revealing pathways students follow in developing understanding of variation and linear measurement (related to research question 1). In the second lesson each student's arm span was measured once, introducing a different aspect of variation for students to observe and contrast. From this second lesson, students' development of the ability to compare their representations for the two scenarios and explain differences in terms of variation was explored (research question 2). Students' documentation, in both workbook and software formats, enabled us to monitor their engagement and identify their increasing appreciation of the need to observe, represent, and contrast the variation in the data. Following the lessons, a written student assessment was used for judging retention of understanding of variation developed through the lessons and the degree of transfer of understanding to a different scenario (research question 3).