739 resultados para AUTOMATION
Resumo:
This paper details the design and performance assessment of a unique collision avoidance decision and control strategy for autonomous vision-based See and Avoid systems. The general approach revolves around re-positioning a collision object in the image using image-based visual servoing, without estimating range or time to collision. The decision strategy thus involves determining where to move the collision object, to induce a safe avoidance manuever, and when to cease the avoidance behaviour. These tasks are accomplished by exploiting human navigation models, spiral motion properties, expected image feature uncertainty and the rules of the air. The result is a simple threshold based system that can be tuned and statistically evaluated by extending performance assessment techniques derived for alerting systems. Our results demonstrate how autonomous vision-only See and Avoid systems may be designed under realistic problem constraints, and then evaluated in a manner consistent to aviation expectations.
Resumo:
This paper discusses some of the sensing technologies and control approaches available for guiding robot manipulators for a class of underground mining tasks including drilling jumbos, bolting arms, shotcreters or explosive chargers. Data acquired with such sensors, in the laboratory and underground, is presented.
Resumo:
This thesis develops comprehensive mathematical models for an advanced drying technology Intermittent Microwave Convective Drying (IMCD). The models provide an improved physical understanding of the heat and mass transport during the drying process, which will help to improve the quality of dried food and energy efficiency of the process, as well as will increase the ability of automation and optimization. The final model in this thesis represents the most comprehensive fundamental multiphase model for IMCD that considers 3D electromagnetics coupled with multiphase porous media transport processes. The 3D electromagnetics considers Maxwell's equation and multiphase transport model considers three different phases: solid matrix, liquid water and gas consisting water vapour and air. The multiphase transport includes pressure-driven flow, capillary diffusion, binary diffusion, and evaporation. The models developed in this thesis were validated with extensive experimental investigations.
Resumo:
This paper presents a novel vision-based underwater robotic system for the identification and control of Crown-Of-Thorns starfish (COTS) in coral reef environments. COTS have been identified as one of the most significant threats to Australia's Great Barrier Reef. These starfish literally eat coral, impacting large areas of reef and the marine ecosystem that depends on it. Evidence has suggested that land-based nutrient runoff has accelerated recent outbreaks of COTS requiring extensive use of divers to manually inject biological agents into the starfish in an attempt to control population numbers. Facilitating this control program using robotics is the goal of our research. In this paper we introduce a vision-based COTS detection and tracking system based on a Random Forest Classifier (RFC) trained on images from underwater footage. To track COTS with a moving camera, we embed the RFC in a particle filter detector and tracker where the predicted class probability of the RFC is used as an observation probability to weight the particles, and we use a sparse optical flow estimation for the prediction step of the filter. The system is experimentally evaluated in a realistic laboratory setup using a robotic arm that moves a camera at different speeds and heights over a range of real-size images of COTS in a reef environment.
Resumo:
Service composition enables the creation of services previously unavailable through the aggregation of existing services. The result is called a service composition. Exposing a service composition as a service, the result is called a composed service. It can be distinguished from atomic services. Service composition approaches can be differentiated along two axes: point in time of composition and degree of automation. With design-time and run-time we can identify two different points in time for doing a composition. Additionally we can distinguish between three different degrees of automation: manual, assisted, and automated service composition. 2008 Springer Berlin Heidelberg.
Resumo:
Web service and business process technologies are widely adopted to facilitate business automation and collaboration. Given the complexity of business processes, it is a sought-after feature to show a business process with different views to cater for the diverse interests, authority levels, etc., of different users. Aiming to implement such flexible process views in the Web service environment, this paper presents a novel framework named FlexView to support view abstraction and concretisation of WS-BPEL processes. In the FlexView framework, a rigorous view model is proposed to specify the dependency and correlation between structural components of process views with emphasis on the characteristics of WS-BPEL, and a set of rules are defined to guarantee the structural consistency between process views during transformations. A set of algorithms are developed to shift the abstraction and concretisation operations to the operational level. A prototype is also implemented for the proof-of-concept purpose. 2010 Springer Science+Business Media, LLC.
Resumo:
This paper presents a visual SLAM method for temporary satellite dropout navigation, here applied on fixed- wing aircraft. It is designed for flight altitudes beyond typical stereo ranges, but within the range of distance measurement sensors. The proposed visual SLAM method consists of a common localization step with monocular camera resectioning, and a mapping step which incorporates radar altimeter data for absolute scale estimation. With that, there will be no scale drift of the map and the estimated flight path. The method does not require simplifications like known landmarks and it is thus suitable for unknown and nearly arbitrary terrain. The method is tested with sensor datasets from a manned Cessna 172 aircraft. With 5% absolute scale error from radar measurements causing approximately 2-6% accumulation error over the flown distance, stable positioning is achieved over several minutes of flight time. The main limitations are flight altitudes above the radar range of 750 m where the monocular method will suffer from scale drift, and, depending on the flight speed, flights below 50 m where image processing gets difficult with a downwards-looking camera due to the high optical flow rates and the low image overlap.
Resumo:
Blasting is an integral part of large-scale open cut mining that often occurs in close proximity to population centers and often results in the emission of particulate material and gases potentially hazardous to health. Current air quality monitoring methods rely on limited numbers of fixed sampling locations to validate a complex fluid environment and collect sufficient data to confirm model effectiveness. This paper describes the development of a methodology to address the need of a more precise approach that is capable of characterizing blasting plumes in near-real time. The integration of the system required the modification and integration of an opto-electrical dust sensor, SHARP GP2Y10, into a small fixed-wing and multi-rotor copter, resulting in the collection of data streamed during flight. The paper also describes the calibration of the optical sensor with an industry grade dust-monitoring device, Dusttrak 8520, demonstrating a high correlation between them, with correlation coefficients (R2) greater than 0.9. The laboratory and field tests demonstrate the feasibility of coupling the sensor with the UAVs. However, further work must be done in the areas of sensor selection and calibration as well as flight planning.
Resumo:
This paper presents an unmanned aircraft system (UAS) that uses a probabilistic model for autonomous front-on environmental sensing or photography of a target. The system is based on low-cost and readily-available sensor systems in dynamic environments and with the general intent of improving the capabilities of dynamic waypoint-based navigation systems for a low-cost UAS. The behavioural dynamics of target movement for the design of a Kalman filter and Markov model-based prediction algorithm are included. Geometrical concepts and the Haversine formula are applied to the maximum likelihood case in order to make a prediction regarding a future state of a target, thus delivering a new waypoint for autonomous navigation. The results of the application to aerial filming with low-cost UAS are presented, achieving the desired goal of maintained front-on perspective without significant constraint to the route or pace of target movement.
Resumo:
Modern intramedullary nails, which are utilised for the treatment of bone fractures, need to be designed to fit the anatomy of the patient population. Traditional and recent semi-automated approaches for quantifying the anatomical fit between bones and nail designs suffer from various drawbacks. This thesis proposed an automated comprehensive nail design validation method. The developed software tool was utilised to quantify the anatomical fit of four commercial nail designs. Furthermore, the thesis demonstrated the existence of a bone-nail specific nail entry point. The developed method is of great benefit for the implant manufacturing industry as a nail design validation tool.
Resumo:
,,.,.,,.,,,,.
Resumo:
The reliability of micro inverters is an important factor as it would be necessary to reduce cost and maintenance of the small and medium scale distributed PV power conversion systems. Electrolytic capacitors and active power decouple circuits can be avoided in micro inverters with the use of medium voltage DC-link. Such a DC-link based micro inverter is proposed with a front-end dual inductor current-fed push-pull converter. The primary side power switches of the front-end converter have reduced switching losses due to multi-resonant operation. In addition, the voltage and current stresses on the diodes of the secondary diode voltage doubler rectifier are reduced due to the presence of a series resonant circuit in the front-end converter. The operation of the proposed micro inverter is explained using an in-depth analysis of the switching characteristics of the power semiconductor devices. The theoretical analysis of the proposed micro inverter is validated using simulation result.
Resumo:
Interest in the area of collaborative Unmanned Aerial Vehicles (UAVs) in a Multi-Agent System is growing to compliment the strengths and weaknesses of the human-machine relationship. To achieve effective management of multiple heterogeneous UAVs, the status model of the agents must be communicated to each other. This paper presents the effects on operator Cognitive Workload (CW), Situation Awareness (SA), trust and performance by increasing the autonomy capability transparency through text-based communication of the UAVs to the human agents. The results revealed a reduction in CW, increase in SA, increase in the Competence, Predictability and Reliability dimensions of trust, and the operator performance.
Resumo:
There is an increased interest in measuring the amount of greenhouse gases produced by farming practices . This paper describes an integrated solar powered Unmanned Air Vehicles (UAV) and Wireless Sensor Network (WSN) gas sensing system for greenhouse gas emissions in agricultural lands. The system uses a generic gas sensing system for CH4 and CO2 concentrations using metal oxide (MoX) and non-dispersive infrared sensors, and a new solar cell encapsulation method to power the unmanned aerial system (UAS)as well as a data management platform to store, analyze and share the information with operators and external users. The system was successfully field tested at ground and low altitudes, collecting, storing and transmitting data in real time to a central node for analysis and 3D mapping. The system can be used in a wide range of outdoor applications at a relatively low operational cost. In particular, agricultural environments are increasingly subject to emissions mitigation policies. Accurate measurements of CH4 and CO2 with its temporal and spatial variability can provide farm managers key information to plan agricultural practices. A video of the bench and flight test performed can be seen in the following link: https://www.youtube.com/watch?v=Bwas7stYIxQ
Resumo:
Sensor networks for environmental monitoring present enormous benefits to the community and society as a whole. Currently there is a need for low cost, compact, solar powered sensors suitable for deployment in rural areas. The purpose of this research is to develop both a ground based wireless sensor network and data collection using unmanned aerial vehicles. The ground based sensor system is capable of measuring environmental data such as temperature or air quality using cost effective low power sensors. The sensor will be configured such that its data is stored on an ATMega16 microcontroller which will have the capability of communicating with a UAV flying overhead using UAV communication protocols. The data is then either sent to the ground in real time or stored on the UAV using a microcontroller until it lands or is close enough to enable the transmission of data to the ground station.