790 resultados para Markov Renewal Process
Resumo:
This research contributes a fully-operational approach for managing business process risk in near real-time. The approach consists of a language for defining risks on top of process models, a technique to detect such risks as they eventuate during the execution of business processes, a recommender system for making risk-informed decisions, and a technique to automatically mitigate the detected risks when they are no longer tolerable. Through the incorporation of risk management elements in all stages of the lifecycle of business processes, this work contributes to the effective integration of the fields of Business Process Management and Risk Management.
Resumo:
The purpose of this paper is to review existing knowledge management (KM) practices within the field of asset management, identify gaps, and propose a new approach to managing knowledge for asset management. Existing approaches to KM in the field of asset management are incomplete with the focus primarily on the application of data and information systems, for example the use of an asset register. It is contended these approaches provide access to explicit knowledge and overlook the importance of tacit knowledge acquisition, sharing and application. In doing so, current KM approaches within asset management tend to neglect the significance of relational factors; whereas studies in the knowledge management field have showed that relational modes such as social capital is imperative for ef-fective KM outcomes. In this paper, we argue that incorporating a relational ap-proach to KM is more likely to contribute to the exchange of ideas and the devel-opment of creative responses necessary to improve decision-making in asset management. This conceptual paper uses extant literature to explain knowledge management antecedents and explore its outcomes in the context of asset man-agement. KM is a component in the new Integrated Strategic Asset Management (ISAM) framework developed in conjunction with asset management industry as-sociations (AAMCoG, 2012) that improves asset management performance. In this paper we use Nahapiet and Ghoshal’s (1998) model to explain antecedents of relational approach to knowledge management. Further, we develop an argument that relational knowledge management is likely to contribute to the improvement of the ISAM framework components, such as Organisational Strategic Manage-ment, Service Planning and Delivery. The main contribution of the paper is a novel and robust approach to managing knowledge that leads to the improvement of asset management outcomes.
Resumo:
Process modelling is an integral part of any process industry. Several sugar factory models have been developed over the years to simulate the unit operations. An enhanced and comprehensive milling process simulation model has been developed to analyse the performance of the milling train and to assess the impact of changes and advanced control options for improved operational efficiency. The developed model is incorporated in a proprietary software package ‘SysCAD’. As an example, the milling process model has been used to predict a significant loss of extraction by returning the cush from the juice screen before #3 mill instead of before #2 mill as is more commonly done. Further work is being undertaken to more accurately model extraction processes in a milling train, to examine extraction issues dynamically and to integrate the model into a whole factory model.
Resumo:
Purpose – Context-awareness has emerged as an important principle in the design of flexible business processes. The goal of the research is to develop an approach to extend context-aware business process modeling toward location-awareness. The purpose of this paper is to identify and conceptualize location-dependencies in process modeling. Design/methodology/approach – This paper uses a pattern-based approach to identify location-dependency in process models. The authors design specifications for these patterns. The authors present illustrative examples and evaluate the identified patterns through a literature review of published process cases. Findings – This paper introduces location-awareness as a new perspective to extend context-awareness in BPM research, by introducing relevant location concepts such as location-awareness and location-dependencies. The authors identify five basic location-dependent control-flow patterns that can be captured in process models. And the authors identify location-dependencies in several existing case studies of business processes. Research limitations/implications – The authors focus exclusively on the control-flow perspective of process models. Further work needs to extend the research to address location-dependencies in process data or resources. Further empirical work is needed to explore determinants and consequences of the modeling of location-dependencies. Originality/value – As existing literature mostly focusses on the broad context of business process, location in process modeling still is treated as “second class citizen” in theory and in practice. This paper discusses the vital role of location-dependencies within business processes. The proposed five basic location-dependent control-flow patterns are novel and useful to explain location-dependency in business process models. They provide a conceptual basis for further exploration of location-awareness in the management of business processes.
Resumo:
Empirical evidence shows that repositories of business process models used in industrial practice contain significant amounts of duplication. This duplication arises for example when the repository covers multiple variants of the same processes or due to copy-pasting. Previous work has addressed the problem of efficiently retrieving exact clones that can be refactored into shared subprocess models. This article studies the broader problem of approximate clone detection in process models. The article proposes techniques for detecting clusters of approximate clones based on two well-known clustering algorithms: DBSCAN and Hi- erarchical Agglomerative Clustering (HAC). The article also defines a measure of standardizability of an approximate clone cluster, meaning the potential benefit of replacing the approximate clones with a single standardized subprocess. Experiments show that both techniques, in conjunction with the proposed standardizability measure, accurately retrieve clusters of approximate clones that originate from copy-pasting followed by independent modifications to the copied fragments. Additional experiments show that both techniques produce clusters that match those produced by human subjects and that are perceived to be standardizable.
Resumo:
This paper develops maximum likelihood (ML) estimation schemes for finite-state semi-Markov chains in white Gaussian noise. We assume that the semi-Markov chain is characterised by transition probabilities of known parametric from with unknown parameters. We reformulate this hidden semi-Markov model (HSM) problem in the scalar case as a two-vector homogeneous hidden Markov model (HMM) problem in which the state consist of the signal augmented by the time to last transition. With this reformulation we apply the expectation Maximumisation (EM ) algorithm to obtain ML estimates of the transition probabilities parameters, Markov state levels and noise variance. To demonstrate our proposed schemes, motivated by neuro-biological applications, we use a damped sinusoidal parameterised function for the transition probabilities.
Resumo:
In this paper we propose and study low complexity algorithms for on-line estimation of hidden Markov model (HMM) parameters. The estimates approach the true model parameters as the measurement noise approaches zero, but otherwise give improved estimates, albeit with bias. On a nite data set in the high noise case, the bias may not be signi cantly more severe than for a higher complexity asymptotically optimal scheme. Our algorithms require O(N3) calculations per time instant, where N is the number of states. Previous algorithms based on earlier hidden Markov model signal processing methods, including the expectation-maximumisation (EM) algorithm require O(N4) calculations per time instant.