888 resultados para Model trees


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accurate and detailed road models play an important role in a number of geospatial applications, such as infrastructure planning, traffic monitoring, and driver assistance systems. In this thesis, an integrated approach for the automatic extraction of precise road features from high resolution aerial images and LiDAR point clouds is presented. A framework of road information modeling has been proposed, for rural and urban scenarios respectively, and an integrated system has been developed to deal with road feature extraction using image and LiDAR analysis. For road extraction in rural regions, a hierarchical image analysis is first performed to maximize the exploitation of road characteristics in different resolutions. The rough locations and directions of roads are provided by the road centerlines detected in low resolution images, both of which can be further employed to facilitate the road information generation in high resolution images. The histogram thresholding method is then chosen to classify road details in high resolution images, where color space transformation is used for data preparation. After the road surface detection, anisotropic Gaussian and Gabor filters are employed to enhance road pavement markings while constraining other ground objects, such as vegetation and houses. Afterwards, pavement markings are obtained from the filtered image using the Otsu's clustering method. The final road model is generated by superimposing the lane markings on the road surfaces, where the digital terrain model (DTM) produced by LiDAR data can also be combined to obtain the 3D road model. As the extraction of roads in urban areas is greatly affected by buildings, shadows, vehicles, and parking lots, we combine high resolution aerial images and dense LiDAR data to fully exploit the precise spectral and horizontal spatial resolution of aerial images and the accurate vertical information provided by airborne LiDAR. Objectoriented image analysis methods are employed to process the feature classiffcation and road detection in aerial images. In this process, we first utilize an adaptive mean shift (MS) segmentation algorithm to segment the original images into meaningful object-oriented clusters. Then the support vector machine (SVM) algorithm is further applied on the MS segmented image to extract road objects. Road surface detected in LiDAR intensity images is taken as a mask to remove the effects of shadows and trees. In addition, normalized DSM (nDSM) obtained from LiDAR is employed to filter out other above-ground objects, such as buildings and vehicles. The proposed road extraction approaches are tested using rural and urban datasets respectively. The rural road extraction method is performed using pan-sharpened aerial images of the Bruce Highway, Gympie, Queensland. The road extraction algorithm for urban regions is tested using the datasets of Bundaberg, which combine aerial imagery and LiDAR data. Quantitative evaluation of the extracted road information for both datasets has been carried out. The experiments and the evaluation results using Gympie datasets show that more than 96% of the road surfaces and over 90% of the lane markings are accurately reconstructed, and the false alarm rates for road surfaces and lane markings are below 3% and 2% respectively. For the urban test sites of Bundaberg, more than 93% of the road surface is correctly reconstructed, and the mis-detection rate is below 10%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As organizations reach higher levels of business process management maturity, they often find themselves maintaining very large process model repositories, representing valuable knowledge about their operations. A common practice within these repositories is to create new process models, or extend existing ones, by copying and merging fragments from other models. We contend that if these duplicate fragments, a.k.a. ex- act clones, can be identified and factored out as shared subprocesses, the repository’s maintainability can be greatly improved. With this purpose in mind, we propose an indexing structure to support fast detection of clones in process model repositories. Moreover, we show how this index can be used to efficiently query a process model repository for fragments. This index, called RPSDAG, is based on a novel combination of a method for process model decomposition (namely the Refined Process Structure Tree), with established graph canonization and string matching techniques. We evaluated the RPSDAG with large process model repositories from industrial practice. The experiments show that a significant number of non-trivial clones can be efficiently found in such repositories, and that fragment queries can be handled efficiently.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to make good decisions about the design of information systems, an essential skill is to understand process models of the business domain the system is intended to support. Yet, little knowledge to date has been established about the factors that affect how model users comprehend the content of process models. In this study, we use theories of semiotics and cognitive load to theorize how model and personal factors influence how model viewers comprehend the syntactical information of process models. We then report on a four-part series of experiments, in which we examined these factors. Our results show that additional semantical information impedes syntax comprehension, and that theoretical knowledge eases syntax comprehension. Modeling experience further contributes positively to comprehension efficiency, measured as the ratio of correct answers to the time taken to provide answers. We discuss implications for practice and research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This chapter proposes a conceptual model for optimal development of needed capabilities for the contemporary knowledge economy. We commence by outlining key capability requirements of the 21st century knowledge economy, distinguishing these from those suited to the earlier stages of the knowledge economy. We then discuss the extent to which higher education currently caters to these requirements and then put forward a new model for effective knowledge economy capability learning. The core of this model is the development of an adaptive and adaptable career identity, which is created through a reflective process of career self-management, drawing upon data from the self and the world of work. In turn, career identity drives the individual’s process of skill and knowledge acquisition, including deep disciplinary knowledge. The professional capability learning thus acquired includes disciplinary skill and knowledge sets, generic skills, and also skills for the knowledge economy, including disciplinary agility, social network capability, and enterprise skills. In the final part of this chapter, we envision higher education systems that embrace the model, and suggest steps that could be taken toward making the development of knowledge economy capabilities an integral part of the university experience.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A key issue in the economic development and performance of organizations is the existence of standards. Their definition and control are sources of power and it is important to understand their concept, as it gives standards their direction and their legitimacy, and to explore how they are represented and applied. The difficulties posed by classical micro-economics in establishing a theory of standardization that is compatible with its fundamental axiomatic are acknowledged. We propose to reconsider the problem by taking the opposite perspective in questioning its theoretical base and by reformulating assumptions about the independent and autonomous decisions taken by actors. The Theory of Conventions will offer us a theoretical framework and tools enabling us to understand the systemic dimension and dynamic structure of standards. These will be seen as a special case of conventions. This work aims to provide a sound basis and promote a better consciousness in the development of global project management standards. It aims also to emphasize that social construction is not a matter of copyright but a matter of open minds, collective cognitive process and freedom for the common wealth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A key issue for the economic development and for performance of organizations is the existence of standards. As their definitions and control are source of power, it seems to be important to understand the concept and to wonder about the representations authorized by the concept which give their direction and their legitimacy. The difficulties of classical microeconomics of establishing a theory of standardisation compatible with its fundamental axiomatic are underlined. We propose to reconsider the problem by carrying out the opposite way: to question the theoretical base, by reformulating assumptions on the autonomy of the choice of the actors. The theory of conventions will offer us both a theoretical framework and tools, enabling us to understand the systemic dimension and dynamic structure of standards seen as special case of conventions. This work aims thus to provide a sound basis and promote a better consciousness in the development of global project management standards, aiming also to underline that social construction is not a matter of copyright but a matter of open minds, collective cognitive process and freedom for the common wealth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here we present a sequential Monte Carlo (SMC) algorithm that can be used for any one-at-a-time Bayesian sequential design problem in the presence of model uncertainty where discrete data are encountered. Our focus is on adaptive design for model discrimination but the methodology is applicable if one has a different design objective such as parameter estimation or prediction. An SMC algorithm is run in parallel for each model and the algorithm relies on a convenient estimator of the evidence of each model which is essentially a function of importance sampling weights. Other methods for this task such as quadrature, often used in design, suffer from the curse of dimensionality. Approximating posterior model probabilities in this way allows us to use model discrimination utility functions derived from information theory that were previously difficult to compute except for conjugate models. A major benefit of the algorithm is that it requires very little problem specific tuning. We demonstrate the methodology on three applications, including discriminating between models for decline in motor neuron numbers in patients suffering from neurological diseases such as Motor Neuron disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prefabricated construction is regarded by many as an effective and efficient approach to improving construction processes and productivity, ensuring construction quality and reducing time and cost in the construction industry. However, many problems occur with this approach in practice, including higher risk levels and cost or time overruns. In order to solve such problems, it is proposed that the IKEA model of the manufacturing industry and VP technology are introduced into a prefabricated construction process. The concept of the IKEA model is identified in detail and VP technology is briefly introduced. In conjunction with VP technology, the applications of the IKEA model are presented in detail, i.e. design optimization, production optimization and installation optimization. Furthermore, through a case study of a prefabricated hotel project in Hong Kong, it is shown that the VP-based IKEA model can improve the efficiency and safety of prefabricated construction as well as reducing cost and time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Airports represent the epitome of complex systems with multiple stakeholders, multiple jurisdictions and complex interactions between many actors. The large number of existing models that capture different aspects of the airport are a testament to this. However, these existing models do not consider in a systematic sense modelling requirements nor how stakeholders such as airport operators or airlines would make use of these models. This can detrimentally impact on the verification and validation of models and makes the development of extensible and reusable modelling tools difficult. This paper develops from the Concept of Operations (CONOPS) framework a methodology to help structure the review and development of modelling capabilities and usage scenarios. The method is applied to the review of existing airport terminal passenger models. It is found that existing models can be broadly categorised according to four usage scenarios: capacity planning, operational planning and design, security policy and planning, and airport performance review. The models, the performance metrics that they evaluate and their usage scenarios are discussed. It is found that capacity and operational planning models predominantly focus on performance metrics such as waiting time, service time and congestion whereas performance review models attempt to link those to passenger satisfaction outcomes. Security policy models on the other hand focus on probabilistic risk assessment. However, there is an emerging focus on the need to be able to capture trade-offs between multiple criteria such as security and processing time. Based on the CONOPS framework and literature findings, guidance is provided for the development of future airport terminal models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis provides a query model suitable for context sensitive access to a wide range of distributed linked datasets which are available to scientists using the Internet. The model is designed based on scientific research standards which require scientists to provide replicable methods in their publications. Although there are query models available that provide limited replicability, they do not contextualise the process whereby different scientists select dataset locations based on their trust and physical location. In different contexts, scientists need to perform different data cleaning actions, independent of the overall query, and the model was designed to accommodate this function. The query model was implemented as a prototype web application and its features were verified through its use as the engine behind a major scientific data access site, Bio2RDF.org. The prototype showed that it was possible to have context sensitive behaviour for each of the three mirrors of Bio2RDF.org using a single set of configuration settings. The prototype provided executable query provenance that could be attached to scientific publications to fulfil replicability requirements. The model was designed to make it simple to independently interpret and execute the query provenance documents using context specific profiles, without modifying the original provenance documents. Experiments using the prototype as the data access tool in workflow management systems confirmed that the design of the model made it possible to replicate results in different contexts with minimal additions, and no deletions, to query provenance documents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a porous medium model of the growth and deterioration of the viable sublayers of an epidermal skin substitute. It consists of five species: cells, intracellular and extracellular calcium, tight junctions, and a hypothesised signal chemical emanating from the stratum corneum. The model is solved numerically in Matlab using a finite difference scheme. Steady state calcium distributions are predicted that agree well with the experimental data. Our model also demonstrates epidermal skin substitute deterioration if the calcium diffusion coefficient is reduced compared to reported values in the literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For the further noise reduction in the future, the traffic management which controls traffic flow and physical distribution is important. To conduct the measure by the traffic management effectively, it is necessary to apply the model for predicting the traffic flow in the citywide road network. For this purpose, the existing model named AVENUE was used as a macro-traffic flow prediction model. The traffic flow model was integrated with the road vehicles' sound power model, and the new road traffic noise prediction model was established. By using this prediction model, the noise map of entire city can be made. In this study, first, the change of traffic flow on the road network after the establishment of new roads was estimated, and the change of the road traffic noise caused by the new roads was predicted. As a result, it has been found that this prediction model has the ability to estimate the change of noise map by the traffic management. In addition, the macro-traffic flow model and our conventional micro-traffic flow model were combined, and the coverage of the noise prediction model was expanded.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Having a good automatic anomalous human behaviour detection is one of the goals of smart surveillance systems’ domain of research. The automatic detection addresses several human factor issues underlying the existing surveillance systems. To create such a detection system, contextual information needs to be considered. This is because context is required in order to correctly understand human behaviour. Unfortunately, the use of contextual information is still limited in the automatic anomalous human behaviour detection approaches. This paper proposes a context space model which has two benefits: (a) It provides guidelines for the system designers to select information which can be used to describe context; (b)It enables a system to distinguish between different contexts. A comparative analysis is conducted between a context-based system which employs the proposed context space model and a system which is implemented based on one of the existing approaches. The comparison is applied on a scenario constructed using video clips from CAVIAR dataset. The results show that the context-based system outperforms the other system. This is because the context space model allows the system to considering knowledge learned from the relevant context only.