641 resultados para Consulting Engineering Firms
Resumo:
Past research has suggested that social networking sites are the most common source for social engineering-based attacks. Persuasion research shows that people are more likely to obey and accept a message when the source’s presentation appears to be credible. However, many factors can impact the perceived credibility of a source, depending on its type and the characteristics of the environment. Our previous research showed that there are four dimensions of source credibility in terms of social engineering on Facebook: perceived sincerity, perceived competence, perceived attraction, and perceived worthiness. Because the dimensionalities of source credibility as well as their measurement scales can fluctuate from one type of source to another and from one type of context to another, our aim in this study includes validating the existence of those four dimensions toward the credibility of social engineering attackers on Facebook and developing a valid measurement scale for every dimension of them.
Resumo:
We describe a surprising cooperative adsorption process observed by scanning tunneling microscopy (STM) at the liquid−solid interface. The process involves the association of a threefold hydrogen-bonding unit, trimesic acid (TMA), with straight-chain aliphatic alcohols of varying length (from C7 to C30), which coadsorb on highly oriented pyrolytic graphite (HOPG) to form linear patterns. In certain cases, the known TMA “flower pattern” can coexist temporarily with the linear TMA−alcohol patterns, but it eventually disappears. Time-lapsed STM imaging shows that the evolution of the flower pattern is a classical ripening phenomenon. The periodicity of the linear TMA−alcohol patterns can be modulated by choosing alcohols with appropriate chain lengths, and the precise structure of the patterns depends on the parity of the carbon count in the alkyl chain. Interactions that lead to this odd−even effect are analyzed in detail. The molecular components of the patterns are achiral, yet their association by hydrogen bonding leads to the formation of enantiomeric domains on the surface. The interrelation of these domains and the observation of superperiodic structures (moiré patterns) are rationalized by considering interactions with the underlying graphite surface and within the two-dimensional crystal of the adsorbed molecules. Comparison of the observed two-dimensional structures with the three-dimensional crystal structures of TMA−alcohol complexes determined by X-ray crystallography helps reveal the mechanism of molecular association in these two-component systems.
Resumo:
This study examines and quantifies the effect of adding polyelectrolytes to cellulose nanofibre suspensions on the gel point of cellulose nanofibre suspensions, which is the lowest solids concentration at which the suspension forms a continuous network. The lower the gel point, the faster the drainage time to produce a sheet and the higher the porosity of the final sheet formed. Two new techniques were designed to measure the dynamic compressibility and the drainability of nanocellulose–polyelectrolyte suspensions. We developed a master curve which showed that the independent variable controlling the behaviour of nanocellulose suspensions and its composite is the structure of the flocculated suspension which is best quantified as the gel point. This was independent of the type of polyelectrolyte used. At an addition level of 2 mg/g of nanofibre, a reduction in gel point over 50 % was achieved using either a high molecular weight (13 MDa) linear cationic polyacrylamide (CPAM, 40 % charge), a dendrimer polyethylenimine of high molecular weight of 750,000 Da (HPEI) or even a low molecular weight of 2000 Da (LPEI). There was no significant difference in the minimum gel point achieved, despite the difference in polyelectrolyte morphology and molecular weight. In this paper, we show that the gel point controls the flow through the fibre suspension, even when comparing fibre suspensions with solids content above the gel point. A lower gel point makes it easier for water to drain through the fibre network,reducing the pressure required to achieve a given dewatering rate and reducing the filtering time required to form a wet laid sheet. We further show that the lower gel point partially controls the structure of the wet laid sheet after it is dried. Halving the gel point increased the air permeability of the dry sheet by 37, 46 and 25 %, when using CPAM, HPEI and LPEI, respectively. The resistance to liquid flow was reduced by 74 and 90 %, when using CPAM and LPEI. Analysing the paper formed shows that sheet forming process and final sheet properties can be engineered and controlled by adding polyelectrolytes to the nanofibre suspension.
Resumo:
This doctoral studies focused on the development of new materials for efficient use of solar energy for environmental applications. The research investigated the engineering of the band gap of semiconductor materials to design and optimise visible-light-sensitive photocatalysts. Experimental studies have been combined with computational simulation in order to develop predictive tools for a systematic understanding and design on the crystal and energy band structures of multi-component metal oxides.
Resumo:
Extracellular matrix (ECM) materials are widely used in cartilage tissue engineering. However, the current ECM materials are unsatisfactory for clinical practice as most of them are derived from allogenous or xenogenous tissue. This study was designed to develop a novel autologous ECM scaffold for cartilage tissue engineering. The autologous bone marrow mesenchymal stem cell-derived ECM (aBMSC-dECM) membrane was collected and fabricated into a three-dimensional porous scaffold via cross-linking and freeze-drying techniques. Articular chondrocytes were seeded into the aBMSC-dECM scaffold and atelocollagen scaffold, respectively. An in vitro culture and an in vivo implantation in nude mice model were performed to evaluate the influence on engineered cartilage. The current results showed that the aBMSC-dECM scaffold had a good microstructure and biocompatibility. After 4 weeks in vitro culture, the engineered cartilage in the aBMSC-dECM scaffold group formed thicker cartilage tissue with more homogeneous structure and higher expressions of cartilaginous gene and protein compared with the atelocollagen scaffold group. Furthermore, the engineered cartilage based on the aBMSC-dECM scaffold showed better cartilage formation in terms of volume and homogeneity, cartilage matrix content, and compressive modulus after 3 weeks in vivo implantation. These results indicated that the aBMSC-dECM scaffold could be a successful novel candidate scaffold for cartilage tissue engineering.
Resumo:
This is presentation of the refereed paper accepted for the Conferences' proceedings. The presentation was given on Tuesday, 1 December 2015.
Resumo:
This study provides evidence that after several decades of fighting for equal pay for equal work, an unexplained gender pay gap remains amongst senior executives in ASX-listed firms. After controlling for a large suite of personal, occupational and firm observables, we find female senior executives receive, on average, 22.58 percent less in base salary for the period 2002–2013. When executives are awarded performance-based pay, females receive on average 16.47 percent less in cash bonus and 18.21 percent less in long-term incentives than males. The results are robust to using firm fixed effects and propensity-score matching. Blinder–Oaxaca decomposition results show that the mean pay gap cannot be attributed to gender differences in attributes, including job titles. Instead, the results point to differences in returns on firm-specific variables, in particular firm risk.
Resumo:
BACKGROUND OR CONTEXT The concept of 'Aboriginal engineering' has had little exposure in conventional engineering education programs, despite more than 40,000 years of active human engagement with the diverse Australian environment. The work reported in this paper began with the premise that Indigenous Student Support Through Indigenous Perspectives Embedded in Engineering Curricula (Goldfinch, et al 2013) would provide a clear and replicable means of encouraging Aboriginal teenagers to consider a career in engineering. Although that remains a key outcome of this OLT project, the direction taken by the research had led to additional insights and perspectives that have wide implications for engineering education more generally. There has only been passing reference to the achievements of Aboriginal engineering in current texts, and the very absence of such references was a prompt to explore further as our work developed. PURPOSE OR GOAL Project goals focused on curriculum-based change, including development of a model for inclusive teaching spaces, and study units employing key features of the model. As work progressed we found we needed to understand more about the principles and practices informing the development of pre-contact Aboriginal engineering strategies for sustaining life and society within the landscape of this often harsh continent. We also found ourselves being asked 'what engineering did Aboriginal cultures have?' Finding that there are no easy-to- access answers, we began researching the question, while continuing to engage with specific curriculum trials. APPROACH Stakeholders in the project had been identified as engineering educators, potential Aboriginal students and Aboriginal communities local to Universities involved in the project. We realised, early on, that at least one more group was involved - all the non-Aboriginal students in engineering classes. This realisation, coupled with recognition of the need to understand Aboriginal engineering as a set of viable, long term practices, altered the focus of our efforts. Rather than focusing primarily on finding ways to attract Aboriginal engineering students, the shift has been towards evolving ways of including knowledge about Aboriginal practices and principles in relevant engineering content. DISCUSSION This paper introduces the model resulting from the work of this project, explores its potential influence on engineering curriculum development and reports on implementation strategies. The model is a static representation of a dynamic and cyclic approach to engaging with Aboriginal engineering through contact with local communities in regard to building knowledge about the social beliefs underlying Aboriginal engineering principles and practices. Ways to engage engineering educators, students and the wider community are evolving through the continuing work of the project team and will be reported in more detail in the paper. RECOMMENDATIONS/IMPLICATIONS/CONCLUSION While engineering may be considered by some to be agnostic in regard to culture and social issues, the work of this project is drawing attention to the importance of including such issues into curriculum materials at a number of levels of complexity. The paper will introduce and explore the central concepts of the research completed to date, as well as suggesting ways in which engineering educators can extend their knowledge and understanding of Aboriginal engineering principles in the context of their own specialisations.
Resumo:
Biorefineries, co-producing fuels, green chemicals and bio-products, offer great potential for enhancing agricultural value, and developing new industries in the bioeconomy. Biomass biorefineries aim to convert agricultural crops and wastes through biochemical and enzymatic processes to low cost fermentable sugars and other products which are platforms for value-adding. Through subsequent fermentation or chemical synthesis, the bio-based platforms can be converted to fuels including ethanol and butanol, oils, organic acids such as lactic and levulinic acid and polymer precursors. Other biorefinery products can include food and animal feeds, plastics, fibre products and resins. In 2014, QUT commissioned a study from Deloitte Access Economics and Correlli Consulting to assess the potential future economic value of tropical biorefineries to Queensland. This paper will report on the outcomes of this study and address the opportunities available for tropical biorefineries to contribute to the future profitability and sustainability of tropical agricultural industries in Queensland and more broadly across northern Australia.
Resumo:
Information sharing in distance collaboration: A software engineering perspective, QueenslandFactors in software engineering workgroups such as geographical dispersion and background discipline can be conceptually characterized as "distances", and they are obstructive to team collaboration and information sharing. This thesis focuses on information sharing across multidimensional distances and develops an information sharing distance model, with six core dimensions: geography, time zone, organization, multi-discipline, heterogeneous roles, and varying project tenure. The research suggests that the effectiveness of workgroups may be improved through mindful conducts of information sharing, especially proactive consideration of, and explicit adjustment for, the distances of the recipient when sharing information.
Resumo:
Small, not-for-profit organisations fulfil a need in the economy that is typically not satisfied by for-profit firms. They also operate in ways that are distinct from larger organisations. While such firms employ a substantial proportion of the workforce, research addressing human resource management (HRM) practices in these settings is limited. This article used data collected from five small not-for-profit firms in Australia to examine the way one significant HRM practice – the provision and utilisation of flexible work arrangements – operates in the sector. Drawing on research from several scholarly fields, the article firstly develops a framework comprising three tensions in not-for-profits that have implications for HRM. These tensions are: (1) contradictions between an informal approach to HRM vs. a formal regulatory system; (2) employee values that favour social justice vs. external market forces; and (3) a commitment to service vs. external financial expectations. The article then empirically examines how these tensions are managed in relation to the specific case of flexible work arrangements. The study reveals that tensions around providing and accessing flexible work arrangements are managed in three ways: discretion, leadership style and distancing. These findings more broadly inform the way HRM is operationalised in this under-examined sector.
Resumo:
The treatment of large segmental bone defects remains a significant clinical challenge. Due to limitations surrounding the use of bone grafts, tissue-engineered constructs for the repair of large bone defects could offer an alternative. Before translation of any newly developed tissue engineering (TE) approach to the clinic, efficacy of the treatment must be shown in a validated preclinical large animal model. Currently, biomechanical testing, histology, and microcomputed tomography are performed to assess the quality and quantity of the regenerated bone. However, in vivo monitoring of the progression of healing is seldom performed, which could reveal important information regarding time to restoration of mechanical function and acceleration of regeneration. Furthermore, since the mechanical environment is known to influence bone regeneration, and limb loading of the animals can poorly be controlled, characterizing activity and load history could provide the ability to explain variability in the acquired data sets and potentially outliers based on abnormal loading. Many approaches have been devised to monitor the progression of healing and characterize the mechanical environment in fracture healing studies. In this article, we review previous methods and share results of recent work of our group toward developing and implementing a comprehensive biomechanical monitoring system to study bone regeneration in preclinical TE studies.
Resumo:
Small firms are always vulnerable to complex technological change that may render their existing business model obsolete. This paper emphasises the need to understand how the Internet's ubiquitous World Wide Web is impacting on their operating environments. Consideration of evolutionary theory and the absorptive capacity construct provides the foundation for discussion of how learning and discovery take place within individuals, firms and the environments that interact with. Small firms, we argue, face difficulties identifying what routines and competencies are best aligned with the seemingly invisible dominant designs that support pursuit of new enterprise in web-impacted environments. We argue that such difficulties largely relate to an inability to acquire external knowledge and the subsequent reliance on existing internal selection processes that may reinforce the known, at the expense of the unknown. The paper concludes with consideration as to how managers can overcome the expected difficulties through the development of internal routines that support the continual search, evaluation and acquisition of specific external knowledge.
Resumo:
Many small firms increasingly operate in markets under siege from new entrants who exploit the technologies associated with the Internet's World Wide Web (the web). In these circumstances, interpreting the operating environment is like a vu jade, the opposite of deja vu, a time in space where they have never been, have no idea what they are doing and who it is that could help them. Through the use of the story of the Caterpillar and the Butterfly, this paper considers the inherent difficulties faced by small firms considering the prospect of becoming an e-firm. When considered from an evolutionary perspective, the journey from small firm to small e-firm is not seen as one of choice, but rather one of necessity. In such markets, a race currently appears to exist between entrepreneurs exploiting the web's technologies, and the process of natural selection acting upon firms whose routines have lost favour.
Resumo:
Plasma polymerization was used to coat a melt electrospun polycaprolactone scaffold to improve cell attachment and organization. Plasma polymerization was performed using an amine containing monomer, allylamine, which then allowed for the subsequent immobilization of biomolecules i.e. heparin and fibroblast growth factor-2. The stability of the plasma polymerized amine-coating was demonstrated by X-ray photoelectron spectroscopy analysis and imaging time-of-flight secondary ion mass spectrometry revealed that a uniform plasma amine-coating was deposited throughout the scaffold. Based upon comparison with controls it was evident that the combination scaffold aided cell ingress and the formation of distinct fibroblast and keratinocyte layers.