638 resultados para 091101 Marine Engineering
Resumo:
Although subsampling is a common method for describing the composition of large and diverse trawl catches, the accuracy of these techniques is often unknown. We determined the sampling errors generated from estimating the percentage of the total number of species recorded in catches, as well as the abundance of each species, at each increase in the proportion of the sorted catch. We completely partitioned twenty prawn trawl catches from tropical northern Australia into subsamples of about 10 kg each. All subsamples were then sorted, and species numbers recorded. Catch weights ranged from 71 to 445 kg, and the number of fish species in trawls ranged from 60 to 138, and invertebrate species from 18 to 63. Almost 70% of the species recorded in catches were "rare" in subsamples (less than one individual per 10 kg subsample or less than one in every 389 individuals). A matrix was used to show the increase in the total number of species that were recorded in each catch as the percentage of the sorted catch increased. Simulation modelling showed that sorting small subsamples (about 10% of catch weights) identified about 50% of the total number of species caught in a trawl. Larger subsamples (50% of catch weight on average) identified about 80% of the total species caught in a trawl. The accuracy of estimating the abundance of each species also increased with increasing subsample size. For the "rare" species, sampling error was around 80% after sorting 10% of catch weight and was just less than 50% after 40% of catch weight had been sorted. For the "abundant" species (five or more individuals per 10 kg subsample or five or more in every 389 individuals), sampling error was around 25% after sorting 10% of catch weight, but was reduced to around 10% after 40% of catch weight had been sorted.
Resumo:
A simple stochastic model of a fish population subject to natural and fishing mortalities is described. The fishing effort is assumed to vary over different periods but to be constant within each period. A maximum-likelihood approach is developed for estimating natural mortality (M) and the catchability coefficient (q) simultaneously from catch-and-effort data. If there is not enough contrast in the data to provide reliable estimates of both M and q, as is often the case in practice, the method can be used to obtain the best possible values of q for a range of possible values of M. These techniques are illustrated with tiger prawn (Penaeus semisulcatus) data from the Northern Prawn Fishery of Australia.
Resumo:
This paper investigates the stock-recruitment and equilibrium yield dynamics for the two species of tiger prawns (Penaeus esculentus and Penaeus semisulcatus) in Australia's most productive prawn fishery: the Northern Prawn Fishery. Commercial trawl logbooks for 1970-93 and research surveys are used to develop population models for these prawns. A population model that incorporates continuous recruitment is developed. Annual spawning stock and recruitment indices are then estimated from the population model. Spawning stock indices represent the abundance of female prawns that are likely to spawn; recruitment indices represent the abundance of all prawns less than a certain size. The relationships between spawning stock and subsequent recruitment (SRR), between recruitment and subsequent spawning stock (RSR), and between recruitment and commercial catch were estimated through maximum-likelihood models that incorporated autoregressive terms. Yield as a function of fishing effort was estimated by constraining to equilibrium the SRR and RSR. The resulting production model was then used to determine maximum sustainable yield (MSY) and its corresponding fishing effort (f(MSY)). Long-term yield estimates for the two tiger prawn species range between 3700 and 5300 t. The fishing effort at present is close to the level that should produce MSY for both species of tiger prawns. However, current landings, recruitment and spawning stock are below the equilibrium values predicted by the models. This may be because of uncertainty in the spawning stock-recruitment relationships, a change in carrying capacity, biased estimates of fishing effort, unreliable catch statistics, or simplistic assumptions about stock structure. Although our predictions of tiger prawn yields are uncertain, management will soon have to consider new measures to counteract the effects of future increases in fishing effort.
Resumo:
Minimising catches of non-target animals in a trawl fishery reduces the impact on a marine community and may help to sustain the fishery resource in the long term. Hence the desirability for trawls that minimise impacts on non-target species while maintaining catches of target species. This study resulted from a need to further develop easily handled, semi-pelagic style trawls for Australia's Northern Fish Trawl Fishery. In November 1993 we compared catches from three differently rigged versions of a demersal wing trawl: one fished in a standard demersal configuration with its footrope on the sea bed, and two fished semi-pelagically, with their footropes raised to either 0.4-0.5 or 0.8-0.9 m above the sea bed. At two sites in the northeast Gulf of Carpentaria, each trawl type was used on the same combination of sites, grids within sites and times of day. Catches of the main target species (Lutjanus malabaricus and Lutjanus erythropterus) by the three trawl types were not significantly different. However, the mean catches of both these species and of other commercially important snappers, were highest in the semi-pelagic trawl raised 0.4-0.5 m above the sea bed. This increase could be due to a larger trawl spread or to the whole rig fishing higher in the water column. Of the 107 species of fishes analysed, 61 were caught in greater abundance in the demersal trawl. Seven species were caught more effectively in the semi-pelagic trawl with the footrope 0.4-0.5 m above the substrate; none was caught most effectively with the footrope set at 0.8-0.9 m. Epibenthic byproduct species (squid and Thenus orientalis), fish bycatch, sponges and other epibenthic invertebrates were also caught in lower numbers in the semi-pelagic trawls. The semi-pelagic trawls convincingly caught less (in both numbers and biomass) of the unwanted species which are normally discarded. Semi-pelagic fish trawls of the types tested would be suitable for Australia's Northern Fish Trawl Fishery and probably other demersal trawl fisheries that would benefit from the conservation of non-target epibenthic communities.
Resumo:
The efficiency with which a small beam trawl (1 x 0.5 m mouth) sampled postlarvae and juveniles of tiger prawns Penaeus esculentus and P, semisulcatus at night was estimated in 3 tropical seagrass communities (dominated by Thalassia hemprichii, Syringodium isoetifolium and Enhalus acoroides, respectively) in the shallow waters of the Gulf of Carpentaria in northern Australia. An area of seagrass (40 x 3 m) was enclosed by a net and the beam trawl was repeatedly hand-hauled over the substrate. Net efficiency (q) was calculated using 4 methods: the unweighted Leslie, weighted Leslie, DeLury and Maximum-likelihood (ML) methods. The Maximum-likelihood is the preferred method for estimating efficiency because it makes the fewest assumptions and is not affected by zero catches. The major difference in net efficiencies was between postlarvae (mean ML q +/- 95% confidence limits = 0.66 +/- 0.16) and juveniles of both species (mean q for juveniles in water less than or equal to 1.0 m deep = 0.47 +/- 0.05), i.e. the beam trawl was more efficient at capturing postlarvae than juveniles. There was little difference in net efficiency for P, esculentus between seagrass types (T, hemprichii versus S. isoetifolium), even though the biomass and morphologies of seagrass in these communities differed greatly (biomasses were 54 and 204 g m(-2), respectively). The efficiency of the net appeared to be the same for juveniles of the 2 species in shallow water, but was lower for juvenile P, semisulcatus at high tide when the water was deeper (1.6 to 1.9 m) (0.35 +/- 0.08). The lower efficiency near the time of high tide is possibly because the prawns are more active at high than low tide, and can also escape above the net. Factors affecting net efficiency and alternative methods of estimating net efficiency are discussed.
Resumo:
The biomass and species composition of tropical phytoplankton in Albatross Bay, Gulf of Carpentaria, northern Australia, were examined monthly for 6 yr (1986 to 1992). Chlorophyll a (chl a) concentrations were highest (2 to 5.7 mu g l(-1)) in the wet season at inshore sites, usually coinciding with low salinities (30 to 33 ppt) and high temperatures (29 to 32 degrees C). At the offshore sites chi a concentrations were lower (0.2 to 2 mu g l(-1)) and did not vary seasonally. Nitrate and phosphate concentrations were generally low (0 to 3.68 mu M and 0.09 to 3 mu M for nitrate and phosphate respectively), whereas silicate was present in concentrations in the range 0.19 to 13 mu M. The phytoplankton community was dominated by diatoms, particularly at the inshore sites, as determined by a combination of microscopic and high-performance liquid chromatography (HPLC) pigment analyses. At the offshore sites the proportion of green flagellates increased. The cyanobacterium genus Trichodesmium and the diatom genera Chaetoceros, Rhizosolenia, Bacteriastrum and Thalassionema dominated the phytoplankton caught in 37 mu m mesh nets; however, in contrast to many other coastal areas studied worldwide there was no distinct species succession of the diatoms and only Trichodesmium showed seasonal changes in abundance. This reflects a stable phytoplankton community in waters without pulses of physical and chemical disturbances. These results are discussed in the context of the commercial prawn fishery in the Gulf of Carpentaria and the possible effect of phytoplankton on prawn larval growth and survival.
Resumo:
Traditional comparisons between the capture efficiency of sampling devices have generally looked at the absolute differences between devices. We recommend that the signal-to-noise ratio be used when comparing the capture efficiency of benthic sampling devices. Using the signal-to-noise ratio rather than the absolute difference has the advantages that the variance is taken into account when determining how important the difference is, the hypothesis and minimum detectable difference can be made identical for all taxa, it is independent of the units used for measurement, and the sample-size calculation is independent of the variance. This new technique is illustrated by comparing the capture efficiency of a 0.05 m(2) van Veen grab and an airlift suction device, using samples taken from Heron and One Tree lagoons, Australia.
Resumo:
This paper analyses the performance of particular wave-energy converter that uses the gyroscopic effects of a large rotating fly-wheel in combination with a controlled power-take-off device. Controlled gyroscopic forces have been used successfully in the past to reduce the motion of marine structures. With appropriately designed power-take-off elements, gyroscopic forces can be controlled to optimise the extracted energy from the motion of marine structures.
Resumo:
Internationally, marine biodiversity conservation objectives are having an increasing influence on the management of commercial fisheries. While this is largely being implemented through Marine Protected Areas (MPAs) other management measures, such as market based instruments (MBIs), have proved to be effective at managing target species catch in fisheries and reducing environmental impacts in industries such as mining and tourism. Market-based management measures aim to mitigate the impacts of activities by better aligning the incentives their participants face with the objectives of management, changing their behavior as a consequence. In this paper, we review the potential of MBIs as management tools to mitigate undesirable environmental impacts associated with commercial fishing. Where they exist, examples of previous applications are described and the factors that influence their applicability and effectiveness are discussed. Several fishing methods and impacts are considered and suggest that whilst no single approach is most appropriate in all circumstances either replacing or complementing existing management arrangements with MBIs has the potential to improve environmental performance. This has a number of implications. From the environmental perspective they should enable levels of undesirable impacts such as damage to sensitive habitat or the bycatch of protected species of turtles, marine mammals, and seabirds to be reduced. The increased flexibility MBIs allow industry when developing solutions also has the potential to reduce costs to both the industry and managers, improving the cost-effectiveness of regulation as a result. Further, in the increasingly relevant case of MPAs the need for publicly funded compensation, often paid to industry when vessels are excluded from grounds, may also be significantly reduced if improved environmental performance makes it possible for some industry members to continue operating.
Resumo:
This paper presents a detailed simulation model of a Naval coastal patrol vessel. The vessel described is a 50m long, fast monohull coastal patrol vessel. The paper describes the complete model and its implementation in Matlab-Simulink. In order to promote the use of this model, the Simulink files are openly available through a website.
Resumo:
This is presentation of the refereed paper accepted for the Conferences' proceedings. The presentation was given on Tuesday, 1 December 2015.
Resumo:
BACKGROUND OR CONTEXT The concept of 'Aboriginal engineering' has had little exposure in conventional engineering education programs, despite more than 40,000 years of active human engagement with the diverse Australian environment. The work reported in this paper began with the premise that Indigenous Student Support Through Indigenous Perspectives Embedded in Engineering Curricula (Goldfinch, et al 2013) would provide a clear and replicable means of encouraging Aboriginal teenagers to consider a career in engineering. Although that remains a key outcome of this OLT project, the direction taken by the research had led to additional insights and perspectives that have wide implications for engineering education more generally. There has only been passing reference to the achievements of Aboriginal engineering in current texts, and the very absence of such references was a prompt to explore further as our work developed. PURPOSE OR GOAL Project goals focused on curriculum-based change, including development of a model for inclusive teaching spaces, and study units employing key features of the model. As work progressed we found we needed to understand more about the principles and practices informing the development of pre-contact Aboriginal engineering strategies for sustaining life and society within the landscape of this often harsh continent. We also found ourselves being asked 'what engineering did Aboriginal cultures have?' Finding that there are no easy-to- access answers, we began researching the question, while continuing to engage with specific curriculum trials. APPROACH Stakeholders in the project had been identified as engineering educators, potential Aboriginal students and Aboriginal communities local to Universities involved in the project. We realised, early on, that at least one more group was involved - all the non-Aboriginal students in engineering classes. This realisation, coupled with recognition of the need to understand Aboriginal engineering as a set of viable, long term practices, altered the focus of our efforts. Rather than focusing primarily on finding ways to attract Aboriginal engineering students, the shift has been towards evolving ways of including knowledge about Aboriginal practices and principles in relevant engineering content. DISCUSSION This paper introduces the model resulting from the work of this project, explores its potential influence on engineering curriculum development and reports on implementation strategies. The model is a static representation of a dynamic and cyclic approach to engaging with Aboriginal engineering through contact with local communities in regard to building knowledge about the social beliefs underlying Aboriginal engineering principles and practices. Ways to engage engineering educators, students and the wider community are evolving through the continuing work of the project team and will be reported in more detail in the paper. RECOMMENDATIONS/IMPLICATIONS/CONCLUSION While engineering may be considered by some to be agnostic in regard to culture and social issues, the work of this project is drawing attention to the importance of including such issues into curriculum materials at a number of levels of complexity. The paper will introduce and explore the central concepts of the research completed to date, as well as suggesting ways in which engineering educators can extend their knowledge and understanding of Aboriginal engineering principles in the context of their own specialisations.
Resumo:
Dynamic Bayesian Networks (DBNs) provide a versatile platform for predicting and analysing the behaviour of complex systems. As such, they are well suited to the prediction of complex ecosystem population trajectories under anthropogenic disturbances such as the dredging of marine seagrass ecosystems. However, DBNs assume a homogeneous Markov chain whereas a key characteristics of complex ecosystems is the presence of feedback loops, path dependencies and regime changes whereby the behaviour of the system can vary based on past states. This paper develops a method based on the small world structure of complex systems networks to modularise a non-homogeneous DBN and enable the computation of posterior marginal probabilities given evidence in forwards inference. It also provides an approach for an approximate solution for backwards inference as convergence is not guaranteed for a path dependent system. When applied to the seagrass dredging problem, the incorporation of path dependency can implement conditional absorption and allows release from the zero state in line with environmental and ecological observations. As dredging has a marked global impact on seagrass and other marine ecosystems of high environmental and economic value, using such a complex systems model to develop practical ways to meet the needs of conservation and industry through enhancing resistance and/or recovery is of paramount importance.
Resumo:
Information sharing in distance collaboration: A software engineering perspective, QueenslandFactors in software engineering workgroups such as geographical dispersion and background discipline can be conceptually characterized as "distances", and they are obstructive to team collaboration and information sharing. This thesis focuses on information sharing across multidimensional distances and develops an information sharing distance model, with six core dimensions: geography, time zone, organization, multi-discipline, heterogeneous roles, and varying project tenure. The research suggests that the effectiveness of workgroups may be improved through mindful conducts of information sharing, especially proactive consideration of, and explicit adjustment for, the distances of the recipient when sharing information.
Resumo:
The treatment of large segmental bone defects remains a significant clinical challenge. Due to limitations surrounding the use of bone grafts, tissue-engineered constructs for the repair of large bone defects could offer an alternative. Before translation of any newly developed tissue engineering (TE) approach to the clinic, efficacy of the treatment must be shown in a validated preclinical large animal model. Currently, biomechanical testing, histology, and microcomputed tomography are performed to assess the quality and quantity of the regenerated bone. However, in vivo monitoring of the progression of healing is seldom performed, which could reveal important information regarding time to restoration of mechanical function and acceleration of regeneration. Furthermore, since the mechanical environment is known to influence bone regeneration, and limb loading of the animals can poorly be controlled, characterizing activity and load history could provide the ability to explain variability in the acquired data sets and potentially outliers based on abnormal loading. Many approaches have been devised to monitor the progression of healing and characterize the mechanical environment in fracture healing studies. In this article, we review previous methods and share results of recent work of our group toward developing and implementing a comprehensive biomechanical monitoring system to study bone regeneration in preclinical TE studies.