62 resultados para upper topology
Resumo:
These lecture notes describe the use and implementation of a framework in which mathematical as well as engineering optimisation problems can be analysed. The foundations of the framework and algorithms described -Hierarchical Asynchronous Parallel Evolutionary Algorithms (HAPEAs) - lie upon traditional evolution strategies and incorporate the concepts of a multi-objective optimisation, hierarchical topology, asynchronous evaluation of candidate solutions , parallel computing and game strategies. In a step by step approach, the numerical implementation of EAs and HAPEAs for solving multi criteria optimisation problems is conducted providing the reader with the knowledge to reproduce these hand on training in his – her- academic or industrial environment.
Resumo:
These lecture notes highlight some of the recent applications of multi-objective and multidisciplinary design optimisation in aeronautical design using the framework and methodology described in References 8, 23, 24 and in Part 1 and 2 of the notes. A summary of the methodology is described and the treatment of uncertainties in flight conditions parameters by the HAPEAs software and game strategies is introduced. Several test cases dealing with detailed design and computed with the software are presented and results discussed in section 4 of these notes.
Resumo:
Background: In recent years, there have been investigations concerning upper-limbs kinematics by various devices. The latest generation of smartphones often includes inertial sensors with subunits which can detect inertial kinematics. The use of smartphones is presented as a convenient and portable analysis method for studying kinematics in terms of angular mobility and linear acceleration Objective: The aim of this study was to study humerus kinematics through six physical properties that correspond to angular mobility and acceleration in the three axes of space, obtained by a smartphone. Methods: This cross-sectional study recruited healthy young adult subjects. Descriptive and anthropometric independent variables related to age, gender, weight, size, and BMI were included. Six physical properties were included corresponding to two dependent variables for each of three special axes: mobility angle (degrees) and lineal acceleration (meters/seconds2), which were obtained thought the inertial measurement sensor embedded in the iPhone4 smartphone equipped with three two elements for the detection of kinematic variables: a gyroscope and an accelerometer. Apple uses an LIS302DL accelerometer in the iPhone4. The application used to obtain kinematic data was xSensor Pro, Crossbow Technology, Inc., available at the Apple AppStore. The iPhone4 has storage capacity of 20MB. The data-sampling rate was set to 32 Hz, and the data for each analytical task was transmitted as email for analysis and postprocessing The iPhone4 was placed in the right half of the body of each subject located in the middle third of the humerus slightly posterior snugly secured by a neoprene fixation belt. Tasks were explained concisely and clearly. The beginning and the end were decided by a verbal order by the researcher. Participants were placed standing, starting from neutral position, performing the following analytical tasks: 180º right shoulder abduction (eight repetitions) and, after a break of about 3 minutes, 180º right shoulder flexion (eight repetitions). Both tasks were performed with the elbow extended, wrist in neutral position and the palmar area of the hand toward the midline at the beginning and end of the movement. Results: A total of 11 subjects (8 men, 3 woman) were measured, whose mean of age was 24.7 years (SD = 4.22 years) and their average BMI was 22.64 Kg/m2 (SD = 2.29 Kg/m2). The mean of angular mobility collected by the smartphone was bigger in pitch axis for flexion (= 157.28°, SD= 12.35°) and abduction (= 151.71°, SD= 9.70°). With regard to acceleration, the highest peak mean value was shown in the Y motion axis during flexion (= 19.5°/s2, SD = 0.8°/s2) and abduction (= 19.4°/s2, SD = 0.8°/s2). Also, descriptive graphics of analytical tasks performed were obtained. Conclusions: This study shows how humerus contributes to upper-limb motion and it identified movement patterns. Therefore, it supports smartphone as a useful device to analyze upper-limb kinematics. Thanks to this study it´s possible to develop a simple application that facilitates the evaluation of the patient.
Resumo:
In this paper, we demonstrate that the distribution of Wolfram classes within a cellular automata rule space in the triangular tessellation is not consistent across different topological general. Using a statistical mechanics approach, cellular automata dynamical classes were approximated for cellular automata defined on genus-0, genus-1 and genus-2 2-manifolds. A distribution-free equality test for empirical distributions was applied to identify cases in which Wolfram classes were distributed differently across topologies. This result implies that global structure and local dynamics contribute to the long term evolution of cellular automata.
Resumo:
This thesis presents an empirical study of the effects of topology on cellular automata rule spaces. The classical definition of a cellular automaton is restricted to that of a regular lattice, often with periodic boundary conditions. This definition is extended to allow for arbitrary topologies. The dynamics of cellular automata within the triangular tessellation were analysed when transformed to 2-manifolds of topological genus 0, genus 1 and genus 2. Cellular automata dynamics were analysed from a statistical mechanics perspective. The sample sizes required to obtain accurate entropy calculations were determined by an entropy error analysis which observed the error in the computed entropy against increasing sample sizes. Each cellular automata rule space was sampled repeatedly and the selected cellular automata were simulated over many thousands of trials for each topology. This resulted in an entropy distribution for each rule space. The computed entropy distributions are indicative of the cellular automata dynamical class distribution. Through the comparison of these dynamical class distributions using the E-statistic, it was identified that such topological changes cause these distributions to alter. This is a significant result which implies that both global structure and local dynamics play a important role in defining long term behaviour of cellular automata.
Resumo:
Background The Upper Limb Functional Index (ULFI) is an internationally widely used outcome measure with robust, valid psychometric properties. The purpose of study is to develop and validate a ULFI Spanish-version (ULFI-Sp). Methods A two stage observational study was conducted. The ULFI was cross-culturally adapted to Spanish through double forward and backward translations, the psychometric properties were then validated. Participants (n = 126) with various upper limb conditions of >12 weeks duration completed the ULFI-Sp, QuickDASH and the Euroqol Health Questionnaire 5 Dimensions (EQ-5D-3 L). The full sample determined internal consistency, concurrent criterion validity, construct validity and factor structure; a subgroup (n = 35) determined reliability at seven days. Results The ULFI-Sp demonstrated high internal consistency (α = 0.94) and reliability (r = 0.93). Factor structure was one-dimensional and supported construct validity. Criterion validity with the EQ-5D-3 L was fair and inversely correlated (r = −0.59). The QuickDASH data was unavailable for analysis due to excessive missing responses. Conclusions The ULFI-Sp is a valid upper limb outcome measure with similar psychometric properties to the English language version.
Resumo:
Selection of features that will permit accurate pattern classification is a difficult task. However, if a particular data set is represented by discrete valued features, it becomes possible to determine empirically the contribution that each feature makes to the discrimination between classes. This paper extends the discrimination bound method so that both the maximum and average discrimination expected on unseen test data can be estimated. These estimation techniques are the basis of a backwards elimination algorithm that can be use to rank features in order of their discriminative power. Two problems are used to demonstrate this feature selection process: classification of the Mushroom Database, and a real-world, pregnancy related medical risk prediction task - assessment of risk of perinatal death.
Resumo:
In some delay-tolerant communication systems such as vehicular ad-hoc networks, information flow can be represented as an infectious process, where each entity having already received the information will try to share it with its neighbours. The random walk and random waypoint models are popular analysis tools for these epidemic broadcasts, and represent two types of random mobility. In this paper, we introduce a simulation framework investigating the impact of a gradual increase of bias in path selection (i.e. reduction of randomness), when moving from the former to the latter. Randomness in path selection can significantly alter the system performances, in both regular and irregular network structures. The implications of these results for real systems are discussed in details.
Resumo:
Photographic documentation of sculpture produces significant consequences for the way in which sculptural space is conceived. When viewed as discrete mediums the interaction of the photograph and its sculptural subject is always framed by notions of loss. However, when taken as a composite system, the sculpture-photograph proposes a new ontology of space. In place of the fixity of medium, we can observe a topology at play: a theory drawn from mathematics in which space is understood not as a static field but in terms of properties of connectedness, movement and differentiation. Refracted through the photographic medium, sculpture becomes not a field of fixed points in space, but rather as a fluid set of relations - a continuous sequence of multiple ‘surfaces’, a network of shifting views. This paper will develop a topological account of studio practice through an examination of the work of the contemporary Belgian sculptor Didier Vermeiren (b. 1951). Since the 1980s, Vermeiren has made extensive use of photography in his sculptural practice. By analysing a series of iterations of his work Cariatide à la Pierre (1997-1998), this paper proposes that Vermeiren’s use of photography reveals patterns of connection that expand and complicate the language of sculpture, while also emphasising the broader topology of the artist’s practice as a network of ‘backward glances’ to previous works from the artist’s oeuvre and the art-historical canon. In this context, photography is not simply a method of documentation, but rather a means of revealing the intrinsic condition of sculpture as medium shaped by dynamic patterns of connection and change. In Vermeiren’s work the sculpture-photograph, has a composite identity that exceeds straightforward categories of medium. In their place, we can observe a practice based upon the complex interactions of objects whose ontology is always underpinned by a certain contingency. It is in this fundamental mobility, that the topology of Vermeiren’s practice can be said to rest.
Resumo:
Surgical implantations of osseointegrated fixations for bone-anchored prosthesis are developing at an unprecedented pace worldwide while initial skepticism in the orthopedic community is slowly fading away. Clearly, this option is becoming accessible to a wide range of individuals with limb loss. [1-18] The team led by Dr Rickard Branemark has previously published a number of landmark articles focusing on the benefits and safety of the OPRA fixation mainly for individual with lower limb loss, particularly those with transfemoral amputation. [1-3, 19-32] However, similar information is lacking for those with upper limb amputation. This team is once again taking a leading role by sharing a retrospective study focusing on the implant survival, adverse events, implant stability, and bone remodelling for 18 individuals with transhumeral amputation over a 5-year post-operative period. Therefore, a comprehensive analysis of the safety of the procedure is accessible for the first time. In essence, the results showed an implant survival rate of 83% and 80% at 2 and 5 year follow ups, respectively. The most frequent adverse events were superficial skin infections that occurred for 28% (5) participants while the least frequent was deep bone infection that happened only once. More importantly, 38% of complications due to infections were effectively managed with nonoperative treatments (e.g., revision of skin penetration site, local cleaning, antibiotics, restriction of soft tissue mobility). Implant stability and bone remodelling were satisfactory. Clearly, this study provided better understanding of the safety of the OPRA surgical and rehabilitation procedure for individuals with upper limb amputation while establishing standards and benchmark data for future studies. However, strong evidences of the benefits are yet to be demonstrated. However, increase in health related quality of life and functional outcomes (e.g., range of movement) are likely. Altogether, the team of authors are providing further evidence that bone-anchored attachment is definitely a promising alternative to socket prostheses.
Resumo:
Genetic correlation (rg) analysis determines how much of the correlation between two measures is due to common genetic influences. In an analysis of 4 Tesla diffusion tensor images (DTI) from 531 healthy young adult twins and their siblings, we generalized the concept of genetic correlation to determine common genetic influences on white matter integrity, measured by fractional anisotropy (FA), at all points of the brain, yielding an NxN genetic correlation matrix rg(x,y) between FA values at all pairs of voxels in the brain. With hierarchical clustering, we identified brain regions with relatively homogeneous genetic determinants, to boost the power to identify causal single nucleotide polymorphisms (SNP). We applied genome-wide association (GWA) to assess associations between 529,497 SNPs and FA in clusters defined by hubs of the clustered genetic correlation matrix. We identified a network of genes, with a scale-free topology, that influences white matter integrity over multiple brain regions.
Resumo:
As connectivity analyses become more popular, claims are often made about how the brain's anatomical networks depend on age, sex, or disease. It is unclear how results depend on tractography methods used to compute fiber networks. We applied 11 tractography methods to high angular resolution diffusion images of the brain (4-Tesla 105-gradient HARDI) from 536 healthy young adults. We parcellated 70 cortical regions, yielding 70×70 connectivity matrices, encoding fiber density. We computed popular graph theory metrics, including network efficiency, and characteristic path lengths. Both metrics were robust to the number of spherical harmonics used to model diffusion (4th-8th order). Age effects were detected only for networks computed with the probabilistic Hough transform method, which excludes smaller fibers. Sex and total brain volume affected networks measured with deterministic, tensor-based fiber tracking but not with the Hough method. Each tractography method includes different fibers, which affects inferences made about the reconstructed networks.
Resumo:
Natural nanopatterned surfaces (nNPS) present on insect wings have demonstrated bactericidal activity [1, 2]. Fabricated nanopatterned surfaces (fNPS) derived by characterization of these wings have also shown superior bactericidal activity [2]. However bactericidal NPS topologies vary in both geometry and chemical characteristics of the individual features in different insects and fabricated surfaces, rendering it difficult to ascertain the optimum geometrical parameters underling bactericidal activity. This situation calls for the adaptation of new and emerging techniques, which are capable of fabricating and characterising comparable structures to nNPS from biocompatible materials. In this research, CAD drawn nNPS representing an area of 10 μm x10 μm was fabricated on a fused silica glass by Nanoscribe photonic professional GT 3D laser lithography system using two photon polymerization lithography. The glass was cleaned with acetone and isopropyl alcohol thrice and a drop of IP-DIP photoresist from Nanoscribe GmbH was cast onto the glass slide prior to patterning. Photosensitive IP-DIP resist was polymerized with high precision to make the surface nanopatterns using a 780 nm wavelength laser. Both moving-beam fixedsample (MBFS) and fixed-beam moving-sample (FBMS) fabrication approaches were tested during the fabrication process to determine the best approach for the precise fabrication of the required nanotopological pattern. Laser power was also optimized to fabricate the required fNPS, where this was changed from 3mW to 10mW to determine the optimum laser power for the polymerization of the photoresist for fabricating FNPS...
Resumo:
The safety, effectiveness and capabilities of therapeutic upper fibreoptic endoscopy in children undergoing therapeutic endoscopic procedures (n = 443) was studied. Therapy for gastrointestinal bleeding formed the major group (injection sclerotherapy for varices, n = 197 procedures; thermocoagulation for haemorrhagic gastritis, n = 1; and photocoaulation for Dieulafoy's disease, n = 1). Sclerotherapy was 97% effective in controlling acute bleeding and 84% effective in obliterating varices with no serious complications or deaths. Oesophageal dilatations for surgical, caustic, congenital and peptic strictures and achalasia (n = 193) were performed with no oesophageal perforations or deaths. Foreign bodies were retrieved (n = 34) with no failures or complications. Percutaneous endoscopic gastrostomy was performed (n = 11) with one failure, proceeding to an unsuccessful surgical gastrostomy. Miscellaneous procedures included endoscopic transpyloric tube placement (n = 5) and endoscopic diathermy of pyloric web (n = 1). Therapeutic fibreoptic endoscopy is therefore concluded to be safe and effective in children, replacing rigid oesophagoscopy and some traditional surgical approaches.
Resumo:
Science education has been the subject of increasing public interest over the last few years. While a good part of this attention has been due to the fundamental reshaping of school curricula and teacher professional standards currently underway, there has been a heightened level of critical media commentary about the state of science education in schools and science teacher education in universities. In some cases, the commentary has been informed by sound evidence and balanced perspectives. More recently, however, a greater degree of ignorance and misrepresentation has crept into the discourse. This chapter provides background on the history and status of science teacher education in Australia, along with insights into recent developments and challenges.