9 resultados para upper topology
em CaltechTHESIS
Resumo:
Large quantities of teleseismic short-period seismograms recorded at SCARLET provide travel time, apparent velocity and waveform data for study of upper mantle compressional velocity structure. Relative array analysis of arrival times from distant (30° < Δ < 95°) earthquakes at all azimuths constrains lateral velocity variations beneath southern California. We compare dT/dΔ back azimuth and averaged arrival time estimates from the entire network for 154 events to the same parameters derived from small subsets of SCARLET. Patterns of mislocation vectors for over 100 overlapping subarrays delimit the spatial extent of an east-west striking, high-velocity anomaly beneath the Transverse Ranges. Thin lens analysis of the averaged arrival time differences, called 'net delay' data, requires the mean depth of the corresponding lens to be more than 100 km. Our results are consistent with the PKP-delay times of Hadley and Kanamori (1977), who first proposed the high-velocity feature, but we place the anomalous material at substantially greater depths than their 40-100 km estimate.
Detailed analysis of travel time, ray parameter and waveform data from 29 events occurring in the distance range 9° to 40° reveals the upper mantle structure beneath an oceanic ridge to depths of over 900 km. More than 1400 digital seismograms from earthquakes in Mexico and Central America yield 1753 travel times and 58 dT/dΔ measurements as well as high-quality, stable waveforms for investigation of the deep structure of the Gulf of California. The result of a travel time inversion with the tau method (Bessonova et al., 1976) is adjusted to fit the p(Δ) data, then further refined by incorporation of relative amplitude information through synthetic seismogram modeling. The application of a modified wave field continuation method (Clayton and McMechan, 1981) to the data with the final model confirms that GCA is consistent with the entire data set and also provides an estimate of the data resolution in velocity-depth space. We discover that the upper mantle under this spreading center has anomalously slow velocities to depths of 350 km, and place new constraints on the shape of the 660 km discontinuity.
Seismograms from 22 earthquakes along the northeast Pacific rim recorded in southern California form the data set for a comparative investigation of the upper mantle beneath the Cascade Ranges-Juan de Fuca region, an ocean-continent transit ion. These data consist of 853 seismograms (6° < Δ < 42°) which produce 1068 travel times and 40 ray parameter estimates. We use the spreading center model initially in synthetic seismogram modeling, and perturb GCA until the Cascade Ranges data are matched. Wave field continuation of both data sets with a common reference model confirms that real differences exist between the two suites of seismograms, implying lateral variation in the upper mantle. The ocean-continent transition model, CJF, features velocities from 200 and 350 km that are intermediate between GCA and T7 (Burdick and Helmberger, 1978), a model for the inland western United States. Models of continental shield regions (e.g., King and Calcagnile, 1976) have higher velocities in this depth range, but all four model types are similar below 400 km. This variation in rate of velocity increase with tectonic regime suggests an inverse relationship between velocity gradient and lithospheric age above 400 km depth.
Resumo:
The nature of the subducted lithospheric slab is investigated seismologically by tomographic inversions of ISC residual travel times. The slab, in which nearly all deep earthquakes occur, is fast in the seismic images because it is much cooler than the ambient mantle. High resolution three-dimensional P and S wave models in the NW Pacific are obtained using regional data, while inversion for the SW Pacific slabs includes teleseismic arrivals. Resolution and noise estimations show the models are generally well-resolved.
The slab anomalies in these models, as inferred from the seismicity, are generally coherent in the upper mantle and become contorted and decrease in amplitude with depth. Fast slabs are surrounded by slow regions shallower than 350 km depth. Slab fingering, including segmentation and spreading, is indicated near the bottom of the upper mantle. The fast anomalies associated with the Japan, Izu-Bonin, Mariana and Kermadec subduction zones tend to flatten to sub-horizontal at depth, while downward spreading may occur under parts of the Mariana and Kuril arcs. The Tonga slab appears to end around 550 km depth, but is underlain by a fast band at 750-1000 km depths.
The NW Pacific model combined with the Clayton-Comer mantle model predicts many observed residual sphere patterns. The predictions indicate that the near-source anomalies affect the residual spheres less than the teleseismic contributions. The teleseismic contributions may be removed either by using a mantle model, or using teleseismic station averages of residuals from only regional events. The slab-like fast bands in the corrected residual spheres are are consistent with seismicity trends under the Mariana Tzu-Bonin and Japan trenches, but are inconsistent for the Kuril events.
The comparison of the tomographic models with earthquake focal mechanisms shows that deep compression axes and fast velocity slab anomalies are in consistent alignment, even when the slab is contorted or flattened. Abnormal stress patterns are seen at major junctions of the arcs. The depth boundary between tension and compression in the central parts of these arcs appears to depend on the dip and topology of the slab.
Resumo:
This thesis consists of two separate parts. Part I (Chapter 1) is concerned with seismotectonics of the Middle America subduction zone. In this chapter, stress distribution and Benioff zone geometry are investigated along almost 2000 km of this subduction zone, from the Rivera Fracture Zone in the north to Guatemala in the south. Particular emphasis is placed on the effects on stress distribution of two aseismic ridges, the Tehuantepec Ridge and the Orozco Fracture Zone, which subduct at seismic gaps. Stress distribution is determined by studying seismicity distribution, and by analysis of 190 focal mechanisms, both new and previously published, which are collected here. In addition, two recent large earthquakes that have occurred near the Tehuantepec Ridge and the Orozco Fracture Zone are discussed in more detail. A consistent stress release pattern is found along most of the Middle America subduction zone: thrust events at shallow depths, followed down-dip by an area of low seismic activity, followed by a zone of normal events at over 175 km from the trench and 60 km depth. The zone of low activity is interpreted as showing decoupling of the plates, and the zone of normal activity as showing the breakup of the descending plate. The portion of subducted lithosphere containing the Orozco Fracture Zone does not differ significantly, in Benioff zone geometry or in stress distribution, from adjoining segments. The Playa Azul earthquake of October 25, 1981, Ms=7.3, occurred in this area. Body and surface wave analysis of this event shows a simple source with a shallow thrust mechanism and gives Mo=1.3x1027 dyne-cm. A stress drop of about 45 bars is calculated; this is slightly higher than that of other thrust events in this subduction zone. In the Tehuantepec Ridge area, only minor differences in stress distribution are seen relative to adjoining segments. For both ridges, the only major difference from adjoining areas is the infrequency or lack of occurrence of large interplate thrust events.
Part II involves upper mantle P wave structure studies, for the Canadian shield and eastern North America. In Chapter 2, the P wave structure of the Canadian shield is determined through forward waveform modeling of the phases Pnl, P, and PP. Effects of lateral heterogeneity are kept to a minimum by using earthquakes just outside the shield as sources, with propagation paths largely within the shield. Previous mantle structure studies have used recordings of P waves in the upper mantle triplication range of 15-30°; however, the lack of large earthquakes in the shield region makes compilation of a complete P wave dataset difficult. By using the phase PP, which undergoes triplications at 30-60°, much more information becomes available. The WKBJ technique is used to calculate synthetic seismograms for PP, and these records are modeled almost as well as the P. A new velocity model, designated S25, is proposed for the Canadian shield. This model contains a thick, high-Q, high-velocity lid to 165 km and a deep low-velocity zone. These features combine to produce seismograms that are markedly different from those generated by other shield structure models. The upper mantle discontinuities in S25 are placed at 405 and 660 km, with a simple linear gradient in velocity between them. Details of the shape of the discontinuities are not well constrained. Below 405 km, this model is not very different from many proposed P wave models for both shield and tectonic regions.
Chapter 3 looks in more detail at recordings of Pnl in eastern North America. First, seismograms from four eastern North American earthquakes are analyzed, and seismic moments for the events are calculated. These earthquakes are important in that they are among the largest to have occurred in eastern North America in the last thirty years, yet in some cases were not large enough to produce many good long-period teleseismic records. A simple layer-over-a-halfspace model is used for the initial modeling, and is found to provide an excellent fit for many features of the observed waveforms. The effects on Pnl of varying lid structure are then investigated. A thick lid with a positive gradient in velocity, such as that proposed for the Canadian shield in Chapter 2, will have a pronounced effect on the waveforms, beginning at distances of 800 or 900 km. Pnl records from the same eastern North American events are recalculated for several lid structure models, to survey what kinds of variations might be seen. For several records it is possible to see likely effects of lid structure in the data. However, the dataset is too sparse to make any general observations about variations in lid structure. This type of modeling is expected to be important in the future, as the analysis is extended to more recent eastern North American events, and as broadband instruments make more high-quality regional recordings available.
Resumo:
The two-pulse stimulated radiation of dense (10^9/cm^3 < ne ≤ 10^(11) /cm^3) nonuniform neon and argon afterglow plasma columns longitudinally immersed in a magnetic field is studied. The magnetic field is very homogeneous over the plasma volume (∆B/B~.01%). If the S-band microwave pulses' center frequency is such that they resonantly excite a narrow band of plasma upper hybrid oscillations close to the maximum upper hybrid frequency of the column, strong two pulse echoes are observed. This new echo process is called the upper hybrid echo. The echo spectrum, echo power and echo width were studied as a function of the pulse peak power P, pulse separation τ, relative density (ω_(po)/ω)^2, and relative cyclotron frequency (ω_c/ω). The complex but systematic variations of the echo properties as a function of the above-mentioned parameters arc found to be in qualitative agreement with those predicted by a theory of Gould and Blum based upon a simple nonuniform unidimensional cold plasma slab model. The possible effects of electron neutral and electron ion collisions not retained in the theoretical model are discussed.
The existence of a new type of cyclotron echo, different from that of Hill and Kaplan and not predicted by the Blum and Gould model is documented. It is believed to be also of a collective effect nature and can probably be described in terms of a theory retaining some hot plasma effects.
Resumo:
The electromagnetic scattering and absorption properties of small (kr~1/2) inhomogeneous magnetoplasma columns are calculated via the full set of Maxwell's equations with tensor dielectric constitutive relation. The cold plasma model with collisional damping is used to describe the column. The equations are solved numerically, subject to boundary conditions appropriate to an infinite parallel strip line and to an incident plane wave. The results are similar for several density profiles and exhibit semiquantitative agreement with measurements in waveguide. The absorption is spatially limited, especially for small collision frequency, to a narrow hybrid resonant layer and is essentially zero when there is no hybrid layer in the column. The reflection is also enhanced when the hybrid layer is present, but the value of the reflection coefficient is strongly modified by the presence of the glass tube. The nature of the solutions and an extensive discussion of the conditions under which the cold collisional model should yield valid results is presented.
Resumo:
We develop a logarithmic potential theory on Riemann surfaces which generalizes logarithmic potential theory on the complex plane. We show the existence of an equilibrium measure and examine its structure. This leads to a formula for the structure of the equilibrium measure which is new even in the plane. We then use our results to study quadrature domains, Laplacian growth, and Coulomb gas ensembles on Riemann surfaces. We prove that the complement of the support of the equilibrium measure satisfies a quadrature identity. Furthermore, our setup allows us to naturally realize weak solutions of Laplacian growth (for a general time-dependent source) as an evolution of the support of equilibrium measures. When applied to the Riemann sphere this approach unifies the known methods for generating interior and exterior Laplacian growth. We later narrow our focus to a special class of quadrature domains which we call Algebraic Quadrature Domains. We show that many of the properties of quadrature domains generalize to this setting. In particular, the boundary of an Algebraic Quadrature Domain is the inverse image of a planar algebraic curve under a meromorphic function. This makes the study of the topology of Algebraic Quadrature Domains an interesting problem. We briefly investigate this problem and then narrow our focus to the study of the topology of classical quadrature domains. We extend the results of Lee and Makarov and prove (for n ≥ 3) c ≤ 5n-5, where c and n denote the connectivity and degree of a (classical) quadrature domain. At the same time we obtain a new upper bound on the number of isolated points of the algebraic curve corresponding to the boundary and thus a new upper bound on the number of special points. In the final chapter we study Coulomb gas ensembles on Riemann surfaces.
Resumo:
Several types of seismological data, including surface wave group and phase velocities, travel times from large explosions, and teleseismic travel time anomalies, have indicated that there are significant regional variations in the upper few hundred kilometers of the mantle beneath continental areas. Body wave travel times and amplitudes from large chemical and nuclear explosions are used in this study to delineate the details of these variations beneath North America.
As a preliminary step in this study, theoretical P wave travel times, apparent velocities, and amplitudes have been calculated for a number of proposed upper mantle models, those of Gutenberg, Jeffreys, Lehman, and Lukk and Nersesov. These quantities have been calculated for both P and S waves for model CIT11GB, which is derived from surface wave dispersion data. First arrival times for all the models except that of Lukk and Nersesov are in close agreement, but the travel time curves for later arrivals are both qualitatively and quantitatively very different. For model CIT11GB, there are two large, overlapping regions of triplication of the travel time curve, produced by regions of rapid velocity increase near depths of 400 and 600 km. Throughout the distance range from 10 to 40 degrees, the later arrivals produced by these discontinuities have larger amplitudes than the first arrivals. The amplitudes of body waves, in fact, are extremely sensitive to small variations in the velocity structure, and provide a powerful tool for studying structural details.
Most of eastern North America, including the Canadian Shield has a Pn velocity of about 8.1 km/sec, with a nearly abrupt increase in compressional velocity by ~ 0.3 km/sec near at a depth varying regionally between 60 and 90 km. Variations in the structure of this part of the mantle are significant even within the Canadian Shield. The low-velocity zone is a minor feature in eastern North America and is subject to pronounced regional variations. It is 30 to 50 km thick, and occurs somewhere in the depth range from 80 to 160 km. The velocity decrease is less than 0.2 km/sec.
Consideration of the absolute amplitudes indicates that the attenuation due to anelasticity is negligible for 2 hz waves in the upper 200 km along the southeastern and southwestern margins of the Canadian Shield. For compressional waves the average Q for this region is > 3000. The amplitudes also indicate that the velocity gradient is at least 2 x 10-3 both above and below the low-velocity zone, implying that the temperature gradient is < 4.8°C/km if the regions are chemically homogeneous.
In western North America, the low-velocity zone is a pronounced feature, extending to the base of the crust and having minimum velocities of 7.7 to 7.8 km/sec. Beneath the Colorado Plateau and Southern Rocky Mountains provinces, there is a rapid velocity increase of about 0.3 km/sec, similar to that observed in eastern North America, but near a depth of 100 km.
Complicated travel time curves observed on profiles with stations in both eastern and western North America can be explained in detail by a model taking into account the lateral variations in the structure of the low-velocity zone. These variations involve primarily the velocity within the zone and the depth to the top of the zone; the depth to the bottom is, for both regions, between 140 and 160 km.
The depth to the transition zone near 400 km also varies regionally, by about 30-40 km. These differences imply variations of 250 °C in the temperature or 6 % in the iron content of the mantle, if the phase transformation of olivine to the spinel structure is assumed responsible. The structural variations at this depth are not correlated with those at shallower depths, and follow no obvious simple pattern.
The computer programs used in this study are described in the Appendices. The program TTINV (Appendix IV) fits spherically symmetric earth models to observed travel time data. The method, described in Appendix III, resembles conventional least-square fitting, using partial derivatives of the travel time with respect to the model parameters to perturb an initial model. The usual ill-conditioned nature of least-squares techniques is avoided by a technique which minimizes both the travel time residuals and the model perturbations.
Spherically symmetric earth models, however, have been found inadequate to explain most of the observed travel times in this study. TVT4, a computer program that performs ray theory calculations for a laterally inhomogeneous earth model, is described in Appendix II. Appendix I gives a derivation of seismic ray theory for an arbitrarily inhomogeneous earth model.
Resumo:
A Riesz space with a Hausdorff, locally convex topology determined by Riesz seminorms is called a locally convex Riesz space. A sequence {xn} in a locally convex Riesz space L is said to converge locally to x ϵ L if for some topologically bounded set B and every real r ˃ 0 there exists N (r) and n ≥ N (r) implies x – xn ϵ rb. Local Cauchy sequences are defined analogously, and L is said to be locally complete if every local Cauchy sequence converges locally. Then L is locally complete if and only if every monotone local Cauchy sequence has a least upper bound. This is a somewhat more general form of the completeness criterion for Riesz – normed Riesz spaces given by Luxemburg and Zaanen. Locally complete, bound, locally convex Riesz spaces are barrelled. If the space is metrizable, local completeness and topological completeness are equivalent.
Two measures of the non-archimedean character of a non-archimedean Riesz space L are the smallest ideal Ao (L) such that quotient space is Archimedean and the ideal I (L) = { x ϵ L: for some 0 ≤ v ϵ L, n |x| ≤ v for n = 1, 2, …}. In general Ao (L) ᴝ I (L). If L is itself a quotient space, a necessary and sufficient condition that Ao (L) = I (L) is given. There is an example where Ao (L) ≠ I (L).
A necessary and sufficient condition that a Riesz space L have every quotient space Archimedean is that for every 0 ≤ u, v ϵ L there exist u1 = sup (inf (n v, u): n = 1, 2, …), and real numbers m1 and m2 such that m1 u1 ≥ v1 and m2 v1 ≥ u1. If, in addition, L is Dedekind σ – complete, then L may be represented as the space of all functions which vanish off finite subsets of some non-empty set.
Resumo:
This thesis presents a topology optimization methodology for the systematic design of optimal multifunctional silicon anode structures in lithium-ion batteries. In order to develop next generation high performance lithium-ion batteries, key design challenges relating to the silicon anode structure must be addressed, namely the lithiation-induced mechanical degradation and the low intrinsic electrical conductivity of silicon. As such, this work considers two design objectives of minimum compliance under design dependent volume expansion, and maximum electrical conduction through the structure, both of which are subject to a constraint on material volume. Density-based topology optimization methods are employed in conjunction with regularization techniques, a continuation scheme, and mathematical programming methods. The objectives are first considered individually, during which the iteration history, mesh independence, and influence of prescribed volume fraction and minimum length scale are investigated. The methodology is subsequently extended to a bi-objective formulation to simultaneously address both the compliance and conduction design criteria. A weighting method is used to derive the Pareto fronts, which demonstrate a clear trade-off between the competing design objectives. Furthermore, a systematic parameter study is undertaken to determine the influence of the prescribed volume fraction and minimum length scale on the optimal combined topologies. The developments presented in this work provide a foundation for the informed design and development of silicon anode structures for high performance lithium-ion batteries.