351 resultados para pre-filtration vertical columns
Resumo:
Action research proved a useful strategy for monitoring the evolution of microteaching task as an authentic assessment for post-graduate pre-service teachers. Through four iterations of continually reflecting on the structure, purpose and outcomes of utilising microteaching as assessment, unit coordinators implemented an authentic assessment task that simulated real world experience.
Resumo:
Nonlinearity, uncertainty and subjectivity are the three predominant characteristics of contractors prequalification which cause the process more of an art than a scientific evaluation. A fuzzy neural network (FNN) model, amalgamating both the fuzzy set and neural network theories, has been developed aiming to improve the objectiveness of contractor prequalification. Through the FNN theory, the fuzzy rules as used by the prequalifiers can be identified and the corresponding membership functions can be transformed. Eighty-five cases with detailed decision criteria and rules for prequalifying Hong Kong civil engineering contractors were collected. These cases were used for training (calibrating) and testing the FNN model. The performance of the FNN model was compared with the original results produced by the prequalifiers and those generated by the general feedforward neural network (GFNN, i.e. a crisp neural network) approach. Contractor’s ranking orders, the model efficiency (R2) and the mean absolute percentage error (MAPE) were examined during the testing phase. These results indicate the applicability of the neural network approach for contractor prequalification and the benefits of the FNN model over the GFNN model. The FNN is a practical approach for modelling contractor prequalification.
Resumo:
The selection criteria for contractor pre-qualification are characterized by the co-existence of both quantitative and qualitative data. The qualitative data is non-linear, uncertain and imprecise. An ideal decision support system for contractor pre-qualification should have the ability of handling both quantitative and qualitative data, and of mapping the complicated nonlinear relationship of the selection criteria, such that rational and consistent decisions can be made. In this research paper, an artificial neural network model was developed to assist public clients identifying suitable contractors for tendering. The pre-qualification criteria (variables) were identified for the model. One hundred and twelve real pre-qualification cases were collected from civil engineering projects in Hong Kong, and eighty-eight hypothetical pre-qualification cases were also generated according to the “If-then” rules used by professionals in the pre-qualification process. The results of the analysis totally comply with current practice (public developers in Hong Kong). Each pre-qualification case consisted of input ratings for candidate contractors’ attributes and their corresponding pre-qualification decisions. The training of the neural network model was accomplished by using the developed program, in which a conjugate gradient descent algorithm was incorporated for improving the learning performance of the network. Cross-validation was applied to estimate the generalization errors based on the “re-sampling” of training pairs. The case studies show that the artificial neural network model is suitable for mapping the complicated nonlinear relationship between contractors’ attributes and their corresponding pre-qualification (disqualification) decisions. The artificial neural network model can be concluded as an ideal alternative for performing the contractor pre-qualification task.
Resumo:
Many interesting phenomena have been observed in layers of granular materials subjected to vertical oscillations; these include the formation of a variety of standing wave patterns, and the occurrence of isolated features called oscillons, which alternately form conical heaps and craters oscillating at one-half of the forcing frequency. No continuum-based explanation of these phenomena has previously been proposed. We apply a continuum theory, termed the double-shearing theory, which has had success in analyzing various problems in the flow of granular materials, to the problem of a layer of granular material on a vertically vibrating rigid base undergoing vertical oscillations in plane strain. There exists a trivial solution in which the layer moves as a rigid body. By investigating linear perturbations of this solution, we find that at certain amplitudes and frequencies this trivial solution can bifurcate. The time dependence of the perturbed solution is governed by Mathieu’s equation, which allows stable, unstable and periodic solutions, and the observed period-doubling behaviour. Several solutions for the spatial velocity distribution are obtained; these include one in which the surface undergoes vertical velocities that have sinusoidal dependence on the horizontal space dimension, which corresponds to the formation of striped standing waves, and is one of the observed patterns. An alternative continuum theory of granular material mechanics, in which the principal axes of stress and rate-of-deformation are coincident, is shown to be incapable of giving rise to similar instabilities.
Resumo:
Background/Aims: In an investigation of the functional impact of amblyopia on children, the fine motor skills, perceived self-esteem and eye movements of amblyopic children were compared with that of age-matched controls. The influence of amblyogenic condition or treatment factors that might predict any decrement in outcome measures was investigated. The relationship between indirect measures of eye movements that are used clinically and eye movement characteristics recorded during reading was examined and the relevance of proficiency in fine motor skills to performance on standardised educational tests was explored in a sub-group of the control children. Methods: Children with amblyopia (n=82; age 8.2 ± 1.3 years) from differing causes (infantile esotropia n=17, acquired strabismus n=28, anisometropia n=15, mixed n=13 and deprivation n=9), and a control group of children (n=106; age 9.5 ± 1.2 years) participated in this study. Measures of visual function included monocular logMAR visual acuity (VA) and stereopsis assessed with the Randot Preschool Stereoacuity test, while fine motor skills were measured using the Visual-Motor Control (VMC) and Upper Limb Speed and Dexterity (ULSD) subtests of the Brunicks-Oseretsky Test of Motor Proficiency. Perceived self esteem was assessed for those children from grade 3 school level with the Harter Self Perception Profile for Children and for those in younger grades (preschool to grade 2) with the Pictorial Scale of Perceived Competence and Acceptance for Young Children. A clinical measure of eye movements was made with the Developmental Eye Movement (DEM) test for those children aged eight years and above. For appropriate case-control comparison of data, the results from amblyopic children were compared with age-matched sub-samples drawn from the group of children with normal vision who completed the tests. Eye movements during reading for comprehension were recorded by the Visagraph infra-red recording system and results of standardised tests of educational performance were also obtained for a sub-set of the control group. Results Amblyopic children (n=82; age 8.2 ± 1.7 years) performed significantly poorer than age-matched control children (n=37; age 8.3 ± 1.3 years) on 9 of 16 fine motor skills sub-items and for the overall age-standardised scores for both VMC and ULSD items (p<0.05); differences were most evident on timed manual dexterity tasks. The underlying aetiology of amblyopia and level of stereoacuity significantly affected fine motor skill performance on both items. However, when examined in a multiple regression model that took into account the inter-correlation between visual characteristics, poorer fine motor skills performance was only associated with strabismus (F1,75 = 5.428; p =0. 022), and not with the level of stereoacuity, refractive error or visual acuity in either eye. Amblyopic children from grade 3 school level and above (n=47; age 9.2 ± 1.3 years), particularly those with acquired strabismus, had significantly lower social acceptance scores than age-matched control children (n=52; age 9.4 ± 0.5 years) (F(5,93) = 3.14; p = 0.012). However, the scores of the amblyopic children were not significantly different to controls for other areas related to self-esteem, including scholastic competence, physical appearance, athletic competence, behavioural conduct and global self worth. A lower social acceptance score was independently associated with a history of treatment with patching but not with a history of strabismus or wearing glasses. Amblyopic children from pre-school to grade 2 school level (n=29; age = 6.6 ± 0.6 years) had similar self-perception scores to their age-matched peers (n=20; age = 6.4 ± 0.5 years). There were no significant differences between the amblyopic (n=39; age 9.1 ± 0.9 years) and age-matched control (n = 42; age = 9.3 ± 0.38 years) groups for any of the DEM outcome measures (Vertical Time, Horizontal Time, Number of Errors and Ratio (Horizontal time/Vertical time)). Performance on the DEM did not significantly relate to measures of VA in either eye, level of binocular function, history of strabismus or refractive error. Developmental Eye Movement test outcome measures Horizontal Time and Vertical Time were significantly correlated with reading rates measured by the Visagraph for both reading for comprehension and naming numbers (r>0.5). Some moderate correlations were also seen between the DEM Ratio and word reading rates as recorded by Visagraph (r=0.37). In children with normal vision, academic scores in mathematics, spelling and reading were associated with measures of fine motor skills. Strongest effect sizes were seen with the timed manual dexterity domain, Upper Limb Speed and Dexterity. Conclusions Amblyopia may have a negative impact on a child’s fine motor skills and an older child’s sense of acceptance by their peers may be influenced by treatment that includes eye patching. Clinical measures of eye movements were not affected in amblyopic children. A number of the outcome measures of the DEM are associated with objective recordings of reading rates, supporting its clinical use for identification of children with slower reading rates. In children with normal vision, proficiency on clinical measures of fine motor skill are associated with outcomes on standardised measures of educational performance. Scores on timed manual dexterity tasks had the strongest association with educational performance. Collectively, the results of this study indicate that, in addition to the reduction in visual acuity and binocular function that define the condition, amblyopes have functional impairment in childhood development skills that underlie proficiency in everyday activities. The study provides support for strategies aimed at early identification and remediation of amblyopia and the co-morbidities that arise from abnormal visual neurodevelopment.
Resumo:
This is an experimental study into the permeability and compressibility properties of bagasse pulp pads. Three experimental rigs were custom-built for this project. The experimental work is complemented by modelling work. Both the steady-state and dynamic behaviour of pulp pads are evaluated in the experimental and modelling components of this project. Bagasse, the fibrous residue that remains after sugar is extracted from sugarcane, is normally burnt in Australia to generate steam and electricity for the sugar factory. A study into bagasse pulp was motivated by the possibility of making highly value-added pulp products from bagasse for the financial benefit of sugarcane millers and growers. The bagasse pulp and paper industry is a multibillion dollar industry (1). Bagasse pulp could replace eucalypt pulp which is more widely used in the local production of paper products. An opportunity exists for replacing the large quantity of mainly generic paper products imported to Australia. This includes 949,000 tonnes of generic photocopier papers (2). The use of bagasse pulp for paper manufacture is the main application area of interest for this study. Bagasse contains a large quantity of short parenchyma cells called ‘pith’. Around 30% of the shortest fibres are removed from bagasse prior to pulping. Despite the ‘depithing’ operations in conventional bagasse pulp mills, a large amount of pith remains in the pulp. Amongst Australian paper producers there is a perception that the high quantity of short fibres in bagasse pulp leads to poor filtration behaviour at the wet-end of a paper machine. Bagasse pulp’s poor filtration behaviour reduces paper production rates and consequently revenue when compared to paper production using locally made eucalypt pulp. Pulp filtration can be characterised by two interacting factors; permeability and compressibility. Surprisingly, there has previously been very little rigorous investigation into neither bagasse pulp permeability nor compressibility. Only freeness testing of bagasse pulp has been published in the open literature. As a result, this study has focussed on a detailed investigation of the filtration properties of bagasse pulp pads. As part of this investigation, this study investigated three options for improving the permeability and compressibility properties of Australian bagasse pulp pads. Two options for further pre-treating depithed bagasse prior to pulping were considered. Firstly, bagasse was fractionated based on size. Two bagasse fractions were produced, ‘coarse’ and ‘medium’ bagasse fractions. Secondly, bagasse was collected after being processed on two types of juice extraction technology, i.e. from a sugar mill and from a sugar diffuser. Finally one method of post-treating the bagasse pulp was investigated. The effects of chemical additives, which are known to improve freeness, were also assessed for their effect on pulp pad permeability and compressibility. Pre-treated Australian bagasse pulp samples were compared with several benchmark pulp samples. A sample of commonly used kraft Eucalyptus globulus pulp was obtained. A sample of depithed Argentinean bagasse, which is used for commercial paper production, was also obtained. A sample of Australian bagasse which was depithed as per typical factory operations was also produced for benchmarking purposes. The steady-state pulp pad permeability and compressibility parameters were determined experimentally using two purpose-built experimental rigs. In reality, steady-state conditions do not exist on a paper machine. The permeability changes as the sheet compresses over time. Hence, a dynamic model was developed which uses the experimentally determined steady-state permeability and compressibility parameters as inputs. The filtration model was developed with a view to designing pulp processing equipment that is suitable specifically for bagasse pulp. The predicted results of the dynamic model were compared to experimental data. The effectiveness of a polymeric and microparticle chemical additives for improving the retention of short fibres and increasing the drainage rate of a bagasse pulp slurry was determined in a third purpose-built rig; a modified Dynamic Drainage Jar (DDJ). These chemical additives were then used in the making of a pulp pad, and their effect on the steady-state and dynamic permeability and compressibility of bagasse pulp pads was determined. The most important finding from this investigation was that Australian bagasse pulp was produced with higher permeability than eucalypt pulp, despite a higher overall content of short fibres. It is thought this research outcome could enable Australian paper producers to switch from eucalypt pulp to bagasse pulp without sacrificing paper machine productivity. It is thought that two factors contributed to the high permeability of the bagasse pulp pad. Firstly, thicker cell walls of the bagasse pulp fibres resulted in high fibre stiffness. Secondly, the bagasse pulp had a large proportion of fibres longer than 1.3 mm. These attributes helped to reinforce the pulp pad matrix. The steady-state permeability and compressibility parameters for the eucalypt pulp were consistent with those found by previous workers. It was also found that Australian pulp derived from the ‘coarse’ bagasse fraction had higher steady-state permeability than the ‘medium’ fraction. However, there was no difference between bagasse pulp originating from a diffuser or a mill. The bagasse pre-treatment options investigated in this study were not found to affect the steady-state compressibility parameters of a pulp pad. The dynamic filtration model was found to give predictions that were in good agreement with experimental data for pads made from samples of pretreated bagasse pulp, provided at least some pith was removed prior to pulping. Applying vacuum to a pulp slurry in the modified DDJ dramatically reduced the drainage time. At any level of vacuum, bagasse pulp benefitted from chemical additives as quantified by reduced drainage time and increased retention of short fibres. Using the modified DDJ, it was observed that under specific conditions, a benchmark depithed bagasse pulp drained more rapidly than the ‘coarse’ bagasse pulp. In steady-state permeability and compressibility experiments, the addition of chemical additives improved the pad permeability and compressibility of a benchmark bagasse pulp with a high quantity of short fibres. Importantly, this effect was not observed for the ‘coarse’ bagasse pulp. However, dynamic filtration experiments showed that there was also a small observable improvement in filtration for the ‘medium’ bagasse pulp. The mechanism of bagasse pulp pad consolidation appears to be by fibre realignment. Chemical additives assist to lubricate the consolidation process. This study was complemented by pulp physical and chemical property testing and a microscopy study. In addition to its high pulp pad permeability, ‘coarse’ bagasse pulp often (but not always) had superior physical properties than a benchmark depithed bagasse pulp.
Resumo:
A significant issue in primary teacher education is developing a knowledge base which prepares teachers to teach in a range of subject areas. In Australia, the problem in primary social science education is compounded by the integrated nature of the key learning area of Studies of Society and Environment (SOSE). Recent debates on teaching integrated social sciences omit discussions on the knowledge base for teaching. In this paper, a case study approach is used to investigate primary pre-service teachers’ approaches to developing a knowledge base in designing a SOSE curriculum unit. Data from five teacher-educators who taught primary SOSE curriculum indicates that novice teachers’ subject content knowledge, as revealed through their curriculum planning, lacked a disciplinary basis. However, understanding of inquiry learning, which is fundamental to social science education, was much stronger. This paper identifies a gap in the scholarship on teaching integrated social science and illustrates the need to support and develop primary teachers’ disciplinary knowledge in teacher education.
Resumo:
Denaturation of extracellular matrix proteins exposes cryptic binding sites. It is hypothesized that binding of cell adhesion receptors to these cryptic binding sites regulates cellular behaviour during tissue repair and regeneration. To test this hypothesis, we quantify the adhesion of pre-osteoblastic cells to native (Col) and partially-denatured (pdCol) collagen I using single-cell force spectroscopy. During early stages of cell attachment (≤180 s) pre-osteoblasts (MC3T3-E1) adhered significantly stronger to pdCol compared to Col. RGD (Arg-Gly-Asp)-containing peptides suppressed this elevated cell adhesion. We show that the RGD-binding α5β1- and αv-integrins mediated pre-osteoblast adhesion to pdCol, but not to Col. On pdCol pre-osteoblasts had a higher focal adhesion kinase tyrosine-phosphorylation level that correlated with enhanced spreading and motility. Moreover, pre-osteoblasts cultured on pdCol showed a pronounced matrix mineralization activity. Our data suggest that partially-denatured collagen exposes RGD-motifs that trigger binding of α5β1- and αv-integrins. These integrins initiate cellular processes that stimulate osteoblast adhesion, spreading, motility and differentiation. Taken together, these quantitative insights reveal an approach for the development of alternative collagen I- based surfaces for tissue engineering applications.
Resumo:
This paper reports on a qualitative interview study with eleven pre-service primary teachers in Queensland about their career plans exploring whether and how a global imagination motivates this next generation of teachers. The study is framed within sociological theory of globalisation, with regard to the growing possibilities for international mobility for work purposes, and the new life circumstances which make this imaginable. Teaching as a profession has changed and teachers are no longer as entangled with specific systems or geographical locations anymore. International recruitment campaigns are shown to pursue these pre-service teachers during their university preparation. The analysis of the interview data reveals the kind of impact these possibilities make on how pre-service teachers imagine their career, and what other considerations enhance or limit their global imagination. The findings are used to reflect on the highly localised governance of pre-service teacher preparation and the limited state-bound imaginaries to which these pre-service teachers are unnecessarily confined in their preparation.
Resumo:
This paper reports on the opportunities for transformational learning experienced by a group of pre-service teachers who were engaged in service-learning as a pedagogical process with a focus on reflection. Critical social theory informed the design of the reflection process as it enabled a move away from knowledge transmission toward knowledge transformation. The structured reflection log was designed to illustrate the critical social theory expectations of quality learning that teach students to think critically: ideology critique and utopian critique. Butin's lenses and a reflection framework informed by the work of Bain, Ballantyne, Mills and Lester were used in the design of the service-learning reflection log. Reported data provide evidence of transformational learning and highlight how the students critique their world and imagine how they could contribute to a better world in their work as a beginning teacher.
Resumo:
An Approach with Vertical Guidance (APV) is an instrument approach procedure which provides horizontal and vertical guidance to a pilot on approach to landing in reduced visibility conditions. APV approaches can greatly reduce the safety risk to general aviation by improving the pilot’s situational awareness. In particular the incidence of Controlled Flight Into Terrain (CFIT) which has occurred in a number of fatal air crashes in general aviation over the past decade in Australia, can be reduced. APV approaches can also improve general aviation operations. If implemented at Australian airports, APV approach procedures are expected to bring a cost saving of millions of dollars to the economy due to fewer missed approaches, diversions and an increased safety benefit. The provision of accurate horizontal and vertical guidance is achievable using the Global Positioning System (GPS). Because aviation is a safety of life application, an aviation-certified GPS receiver must have integrity monitoring or augmentation to ensure that its navigation solution can be trusted. However, the difficulty with the current GPS satellite constellation alone meeting APV integrity requirements, the susceptibility of GPS to jamming or interference and the potential shortcomings of proposed augmentation solutions for Australia such as the Ground-based Regional Augmentation System (GRAS) justifies the investigation of Aircraft Based Augmentation Systems (ABAS) as an alternative integrity solution for general aviation. ABAS augments GPS with other sensors at the aircraft to help it meet the integrity requirements. Typical ABAS designs assume high quality inertial sensors to provide an accurate reference trajectory for Kalman filters. Unfortunately high-quality inertial sensors are too expensive for general aviation. In contrast to these approaches the purpose of this research is to investigate fusing GPS with lower-cost Micro-Electro-Mechanical System (MEMS) Inertial Measurement Units (IMU) and a mathematical model of aircraft dynamics, referred to as an Aircraft Dynamic Model (ADM) in this thesis. Using a model of aircraft dynamics in navigation systems has been studied before in the available literature and shown to be useful particularly for aiding inertial coasting or attitude determination. In contrast to these applications, this thesis investigates its use in ABAS. This thesis presents an ABAS architecture concept which makes use of a MEMS IMU and ADM, named the General Aviation GPS Integrity System (GAGIS) for convenience. GAGIS includes a GPS, MEMS IMU, ADM, a bank of Extended Kalman Filters (EKF) and uses the Normalized Solution Separation (NSS) method for fault detection. The GPS, IMU and ADM information is fused together in a tightly-coupled configuration, with frequent GPS updates applied to correct the IMU and ADM. The use of both IMU and ADM allows for a number of different possible configurations. Three are investigated in this thesis; a GPS-IMU EKF, a GPS-ADM EKF and a GPS-IMU-ADM EKF. The integrity monitoring performance of the GPS-IMU EKF, GPS-ADM EKF and GPS-IMU-ADM EKF architectures are compared against each other and against a stand-alone GPS architecture in a series of computer simulation tests of an APV approach. Typical GPS, IMU, ADM and environmental errors are simulated. The simulation results show the GPS integrity monitoring performance achievable by augmenting GPS with an ADM and low-cost IMU for a general aviation aircraft on an APV approach. A contribution to research is made in determining whether a low-cost IMU or ADM can provide improved integrity monitoring performance over stand-alone GPS. It is found that a reduction of approximately 50% in protection levels is possible using the GPS-IMU EKF or GPS-ADM EKF as well as faster detection of a slowly growing ramp fault on a GPS pseudorange measurement. A second contribution is made in determining how augmenting GPS with an ADM compares to using a low-cost IMU. By comparing the results for the GPS-ADM EKF against the GPS-IMU EKF it is found that protection levels for the GPS-ADM EKF were only approximately 2% higher. This indicates that the GPS-ADM EKF may potentially replace the GPS-IMU EKF for integrity monitoring should the IMU ever fail. In this way the ADM may contribute to the navigation system robustness and redundancy. To investigate this further, a third contribution is made in determining whether or not the ADM can function as an IMU replacement to improve navigation system redundancy by investigating the case of three IMU accelerometers failing. It is found that the failed IMU measurements may be supplemented by the ADM and adequate integrity monitoring performance achieved. Besides treating the IMU and ADM separately as in the GPS-IMU EKF and GPS-ADM EKF, a fourth contribution is made in investigating the possibility of fusing the IMU and ADM information together to achieve greater performance than either alone. This is investigated using the GPS-IMU-ADM EKF. It is found that the GPS-IMU-ADM EKF can achieve protection levels approximately 3% lower in the horizontal and 6% lower in the vertical than a GPS-IMU EKF. However this small improvement may not justify the complexity of fusing the IMU with an ADM in practical systems. Affordable ABAS in general aviation may enhance existing GPS-only fault detection solutions or help overcome any outages in augmentation systems such as the Ground-based Regional Augmentation System (GRAS). Countries such as Australia which currently do not have an augmentation solution for general aviation could especially benefit from the economic savings and safety benefits of satellite navigation-based APV approaches.
Resumo:
Frontal columns in buildings and columns in car parks are vulnerable to vehicular impacts. This paper treats the impact response of such concrete columns under vehicular loads and the use of polymer wrap to enhance their impact capacity. Comprehensive dynamic computer simulation techniques are used along with strain rate effects and hour glass control to evaluate the impact response. Results indicate the effectiveness of wraps in enhancing the impact capacity of these columns.
Resumo:
Adolescent Idiopathic Scoliosis (AIS) has been associated with reduced pulmonary function believed to be due to a restriction of lung volume by the deformed thoracic cavity. A recent study by our group examined the changes in lung volume pre and post anterior thoracoscopic scoliosis correction using pulmonary function testing (1), however the anatomical changes in ribcage shape and left/right lung volume after thoracoscopic surgery which govern overall respiratory capacity are unknown. The aim of this study was to use 3D rendering from CT scan data to compare lung and ribcage anatomical changes from pre to two years post thoracoscopic anterior scoliosis correction. The study concluded that 3D volumetric reconstruction from CT scans is a powerful means of evaluating changes in pulmonary and thoracic anatomy following surgical AIS correction. Most likely, lung volume changes following thoracoscopic scoliosis correction are multifactorial and affected by changes in height (due to residual growth), ribcage shape, diaphragm positioning, Cobb angle correction in the thoracic spine. Further analysis of the 3D reconstructions will be performed to assess how each of these factors affect lung volume in this patient cohort.