143 resultados para motor control


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper describes and evaluates the novel utility of network methods for understanding human interpersonal interactions within social neurobiological systems such as sports teams. We show how collective system networks are supported by the sum of interpersonal interactions that emerge from the activity of system agents (such as players in a sports team). To test this idea we trialled the methodology in analyses of intra-team collective behaviours in the team sport of water polo. We observed that the number of interactions between team members resulted in varied intra-team coordination patterns of play, differentiating between successful and unsuccessful performance outcomes. Future research on small-world networks methodologies needs to formalize measures of node connections in analyses of collective behaviours in sports teams, to verify whether a high frequency of interactions is needed between players in order to achieve competitive performance outcomes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Technique and physical contributions to ball delivery speed in fast bowling have been popular research topics in sports science. However, a common limiting factor of this work is the level of expertise of participants and lack of within bowler investigations (Salter et al., 2007). The relationship between technique, anthropometry and ball speed has not been comprehensively investigated among elite fast bowlers. The purpose of this study was to examine the relationship between technique, anthropometric variables and ball speed using both within- and betweenbowler analyses in a cross section of the Cricket Australia high performance pace pathway.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

For applied sport scientists charged with developing talented performers an essential requirement is to identify components contributing to the development and maintenance of expertise. Previous qualitative analysis has revealed several psychological (e.g., mental focus, goal-setting and selfevaluation), socio-cultural (e.g. community and family support, cultural influence), physical (e.g., strength, height) and environmental (e.g., access to facilities and climate) constraints on successful Olympian development (Abbott et al., 2005). Open-ended interviews with expert athletes and/or expert coaches have been used to reveal competencies of elite performers to derive factors associated with success (Durand-Bush et al., 2002). However, the influence of these factors is likely to be sport-specific due to different task constraints and the changing nature of the performer-environment relationship through practice, coaching and competing (Vaeyens et al., 2008). So far, only one study on expertise acquisition in cricket has been undertaken. Weissensteiner, et al. (2009) found that development of expertise in cricket batting in Australia may be facilitated by early unstructured play (i.e. ‘backyard cricket’), a wide range of sport experience during development, and early exposure to playing with seniors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In fast bowling, cricketers are expected to produce a range of delivery lines and lengths while maximising ball speed. From a coaching perspective, technique consistency has been typically associated with superior performance in these areas. However, although bowlers are required to bowl consistently, at the elite level they must also be able to vary line, length and speed to adapt to opposition batters’ strengths and weaknesses. The relationship between technique and performance variability (and consistency) has not been investigated in previous fast bowling research. Consequently, the aim of this study was to quantify both technique (bowling action and coordination) and performance variability in elite fast bowlers from Australian Junior and National Pace Squads. Technique variability was analysed to investigate whether it could be classified as functional or dysfunctional in relation to speed and accuracy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this chapter is to increase understanding of how a sound theoretical model of the learner and learning processes informs the organisation of learning environments and effective and efficient use of practice time. Drawing on an in-depth interview with Greg Chappell, the head coach at the Centre of Excellence—the Brisbane-based centre for training and development in cricket of the Australian Institute of Sport (AIS) and Cricket Australia—it describes and explains many of the key features of non-linear pedagogy. Specifically, after backgrounding the constraints-led approach, it deals with environmental constraints; the focus of the individual and the implications of self-organisation for coaching strategies; implications for the coach–athlete relationship; manipulating constraints; representative practice; developing decision-makers and learning design including discovery and implicit learning. It then moves on to a discussion of more global issues such as the reactions of coaches and players when a constraints-led approach is introduced, before finally considering the widely held belief among coaches that approaches such as Teaching Games for Understanding (TGfU) ‘take longer’ than traditional coaching methods.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The emergence of Twenty20 cricket at the elite level has been marketed on the excitement of the big hitter, where it seems that winning is a result of the muscular batter hitting boundaries at will. This version of the game has captured the imagination of many young players who all want to score runs with “big hits”. However, in junior cricket, boundary hitting is often more difficult due to size limitations of children and games played on outfields where the ball does not travel quickly. As a result, winning is often achieved via a less spectacular route – by scoring more singles than your opponents. However, most standard coaching texts only describe how to play boundary scoring shots (e.g. the drives, pulls, cuts and sweeps) and defensive shots to protect the wicket. Learning to bat appears to have been reduced to extremes of force production, i.e. maximal force production to hit boundaries or minimal force production to stop the ball from hitting the wicket. Initially, this is not a problem because the typical innings of a young player (<12 years) would be based on the concept of “block” or “bash” – they “block” the good balls and “bash” the short balls. This approach works because there are many opportunities to hit boundaries off the numerous inaccurate deliveries of novice bowlers. Most runs are scored behind the wicket by using the pace of the bowler’s delivery to re-direct the ball, because the intrinsic dynamics (i.e. lack of strength) of most children means that they can only create sufficient power by playing shots where the whole body can contribute to force production. This method works well until the novice player comes up against more accurate bowling when they find they have no way of scoring runs. Once batters begin to face “good” bowlers, batters have to learn to score runs via singles. In cricket coaching manuals (e.g. ECB, n.d), running between the wickets is treated as a separate task to batting, and the “basics” of running, such as how to “back- up”, carry the bat, calling and turning and sliding the bat into the crease are “drilled” into players. This task decomposition strategy focussing on techniques is a common approach to skill acquisition in many highly traditional sports, typified in cricket by activities where players hit balls off tees and receive “throw-downs” from coaches. However, the relative usefulness of these approaches in the acquisition of sporting skills is increasingly being questioned (Pinder, Renshaw & Davids, 2009). We will discuss why this is the case in the next section.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Introduction: Why we need to base childrens’ sport and physical education on the principles of dynamical systems theory and ecological psychology As the childhood years are crucial for developing many physical skills as well as establishing the groundwork leading to lifelong participation in sport and physical activities, (Orlick & Botterill, 1977, p. 11) it is essential to examine current practice to make sure it is meeting the needs of children. In recent papers (e.g. Renshaw, Davids, Chow & Shuttleworth, in press; Renshaw, Davids, Chow & Hammond, in review; Chow et al., 2009) we have highlighted that a guiding theoretical framework is needed to provide a principled approach to teaching and coaching and that the approach must be evidence- based and focused on mechanism and not just on operational issues such as practice, competition and programme management (Lyle, 2002). There is a need to demonstrate how nonlinear pedagogy underpins teaching and coaching practice for children given that some of the current approaches underpinning children’s sport and P.E. may not be leading to optimal results. For example, little time is spent undertaking physical activities (Tinning, 2006) and much of this practice is not representative of the competition demands of the performance environment (Kirk & McPhail, 2002; Renshaw et al., 2008). Proponents of a non- linear pedagogy advocate the design of practice by applying key concepts such as the mutuality of the performer and environment, the tight coupling of perception and action, and the emergence of movement solutions due to self organisation under constraints (see Renshaw, et al., in press). As skills are shaped by the unique interacting individual, task and environmental constraints in these learning environments, small changes to individual structural (e.g. factors such as height or limb length) or functional constraints (e.g. factors such as motivation, perceptual skills, strength that can be acquired), task rules, equipment, or environmental constraints can lead to dramatic changes in movement patterns adopted by learners to solve performance problems. The aim of this chapter is to provide real life examples for teachers and coaches who wish to adopt the ideas of non- linear pedagogy in their practice. Specifically, I will provide examples related to specific issues related to individual constraints in children and in particular the unique challenges facing coaches when individual constraints are changing due to growth and development. Part two focuses on understanding how cultural environmental constraints impact on children’s sport. This is an area that has received very little attention but plays a very important part in the long- term development of sporting expertise. Finally, I will look at how coaches can manipulate task constraints to create effective learning environments for young children.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The use of bowling machines is common practice in cricket. In an ideal world all batters would face real bowlers in practice sessions, but this is not always possible, for many reasons. The clear advantage of using bowling machines is that they alleviate the workload required from bowlers (Dennis, Finch & Farhart, 2005) and provide relatively consistent and accurate ball delivery which may not be otherwise available to many young batters. Anecdotal evidence suggests that many, if not most of the world’s greatest players use these methods within their training schedules. For example, Australian internationals, Michael Hussey and Matthew Hayden extensively used bowling machines (Hussey & Sygall, 2007). Bowling machines enable batsmen to practice for long periods, developing their endurance and concentration. However, despite these obvious benefits, in recent times the use of bowling machines has been questioned by sport scientists, coaches, ex- players and commentators. For example, Hussey’s batting coach comments “…we never went near a bowling machine in [Michael’s] first couple of years, I think there’s something to that …” (Hussey & Sygall, 2007, p. 119). This chapter will discuss the efficacy of using bowling machines with reference to research findings, before reporting new evidence that provides support for an alternative, innovative and possibly more representative practice design. Finally, the chapter will provide advice for coaches on the implications of this research, including a case study approach to demonstrate the practical use of such a design.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In team sports such as rugby union, a myriad of decisions and actions occur within the boundaries that compose the performance perceptual- motor workspace. The way that these performance boundaries constrain decision making and action has recently interested researchers and has involved developing an understanding of the concept of constraints. Considering team sports as complex dynamical systems, signifies that they are composed of multiple, independent agents (i.e. individual players) whose interactions are highly integrated. This level of complexity is characterized by the multiple ways that players in a rugby field can interact. It affords the emergence of rich patterns of behaviour, such as rucks, mauls, and collective tactical actions that emerge due to players’ adjustments to dynamically varying competition environments. During performance, the decisions and actions of each player are constrained by multiple causes (e.g. technical and tactical skills, emotional states, plans, thoughts, etc.) that generate multiple effects (e.g. to run or pass, to move forward to tackle or maintain position and drive the opponent to the line), a prime feature in a complex systems approach to team games performance (Bar- Yam, 2004). To establish a bridge between the complexity sciences and learning design in team sports like rugby union, the aim of practice sessions is to prepare players to pick up and explore the information available in the multiple constraints (i.e. the causes) that influence performance. Therefore, learning design in training sessions should be soundly based on the interactions amongst players (i.e.teammates and opponents) that will occur in rugby matches. To improve individual and collective decision making in rugby union, Passos and colleagues proposed in previous work a performer- environment interaction- based approach rather than a traditional performer- based approach (Passos, Araújo, Davids & Shuttleworth, 2008).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Competitive sailing is characterised by continuous interdependencies of decisions and actions. All actions imply a permanent monitoring of the environmental conditions, such as intensity and direction of the wind, sea characteristics, and the behaviour of the opponent sailors. These constraints on sailors’ behavior are in constant change implying continuous adjustments in sailors’ actions and decisions. Among the different parts of a regatta, tactics and strategy at the start are particularly relevant. Among coaches there is an adage that says that “the start is 50% of a regatta” (Houghton, 1984; Saltonstall, 1983/1986). Olympic sailing regattas are performed with boats of the same class, by one, two or three sailors, depending on the boat class. Normally before the start, sailors visit the racing venue and analyse wind and sea characteristics, in order to fine- tune their boats accordingly. Then, five minutes before the start, sailors initiate starting procedures in order to be in a favourable position at the starting line (at the “second zero”). This position is selected during the start period according to wind shifts tendencies and the actions of other boats (Figure 11.1). Only after the start signal can the boats cross the imaginary starting line between the race committee signal boat “A” and the pin end boat. The start takes place against the wind (upwind), and the boats start racing in the direction of mark 1. Based on the evaluation of the sea and wind characteristics (e.g. if the wind is stronger at a particular place on the course), sailors re- adjust their strategy for the regatta. This strategy may change during the regatta, according to wind changes and adversary actions. More to the point, strategic decisions constrain and are constrained by on- line decisions during the regatta.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A constraints- based framework for understanding processes of movement coordination and control is predicated on a range of theoretical ideas including the work of Bernstein (1967), Gibson (1979), Newell (1986) and Kugler, Kelso & Turvey (1982). Contrary to a normative perspective that focuses on the production of idealized movement patterns to be acquired by children during development and learning (see Alain & Brisson, 1986), this approach formulates the emergence of movement co- ordination as a function of the constraints imposed upon each individual. In this framework, cognitive, perceptual and movement difficulties and disorders are considered to be constraints on the perceptual- motor system, and children’s movements are viewed as emergent functional adaptations to these constraints (Davids et al., 2008; Rosengren, Savelsbergh & van der Kamp, 2003). From this perspective, variability of movement behaviour is not viewed as noise or error to be eradicated during development, but rather, as essentially functional in facilitating the child to satisfy the unique constraints which impinge on his/her developing perceptual- motor and cognitive systems in everyday life (Davids et al., 2008). Recently, it has been reported that functional neurobiological variability is predicated on system degeneracy, an inherent feature of neurobiological systems which facilitates the achievement of task performance goals in a variety of different ways (Glazier & Davids, 2009). Degeneracy refers to the capacity of structurally different components of complex movement systems to achieve different performance outcomes in varying contexts (Tononi et al., 1999; Edelman & Gally, 2001). System degeneracy allows individuals with and without movement disorders to achieve their movement goals by harnessing movement variability during performance. Based on this idea, perceptual- motor disorders can be simply viewed as unique structural and functional system constraints which individuals have to satisfy in interactions with their environments. The aim of this chapter is to elucidate how the interaction of structural and functional organismic, and environmental constraints can be harnessed in a nonlinear pedagogy by individuals with movement disorders.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Use of ball projection machines in the acquisition of interceptive skill has recently been questioned. The use of projection machines in developmental and elite fast ball sports programmes is not a trivial issue, since they play a crucial role in reducing injury incidence in players and coaches. A compelling challenge for sports science is to provide theoretical principles to guide how and when projection machines might be used for acquisition of ball skills and preparation for competition in developmental and elite sport performance programmes. Here, we propose how principles from an ecological dynamics theoretical framework could be adopted by sports scientists, pedagogues and coaches to underpin the design of interventions, practice and training tasks, including the use of hybrid video-projection technologies. The assessment of representative learning design during practice may provide ways to optimize developmental programmes in fast ball sports and inform the principled use of ball projection machines.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study investigated the Kinaesthetic Fusion Effect (KFE) first described by Craske and Kenny in 1981. In Experiment 1 the study did not replicate these findings following a change in the reporting method used by participants. Participants did not perceive any reduction in the sagittal separation of a button pressed by the index finger of one arm and a probe touching the other, following repeated exposure to the tactile stimuli present on both unseen arms. This study’s failure to replicate the widely-cited KFE as described by Craske et al. (1984) suggests that it may be contingent on several aspects of visual information, especially the availability of a specific visual reference, the role of instructions regarding gaze direction, and the potential use of a line of sight strategy when referring felt positions to an interposed surface. In addition, a foreshortening effect was found; this may result from a line-of-sight judgment and represent a feature of the reporting method used. Finally, this research will benefit future studies that require participants to report the perceived locations of the unseen limbs. Experiment 2 investigated the KFE when the visual reference was removed and participants made reports of touched position, blindfolded. A number of interesting outcomes arose from this change and may provide clarification to the phenomena.