109 resultados para diagrammi Penrose spaziotempo singolarità estensione soluzione coordinate gravità
Resumo:
A number of mathematical models investigating certain aspects of the complicated process of wound healing are reported in the literature in recent years. However, effective numerical methods and supporting error analysis for the fractional equations which describe the process of wound healing are still limited. In this paper, we consider numerical simulation of fractional model based on the coupled advection-diffusion equations for cell and chemical concentration in a polar coordinate system. The space fractional derivatives are defined in the Left and Right Riemann-Liouville sense. Fractional orders in advection and diffusion terms belong to the intervals (0; 1) or (1; 2], respectively. Some numerical techniques will be used. Firstly, the coupled advection-diffusion equations are decoupled to a single space fractional advection-diffusion equation in a polar coordinate system. Secondly, we propose a new implicit difference method for simulating this equation by using the equivalent of the Riemann-Liouville and Gr¨unwald-Letnikov fractional derivative definitions. Thirdly, its stability and convergence are discussed, respectively. Finally, some numerical results are given to demonstrate the theoretical analysis.
Resumo:
Introduction: The ability to regulate joint stiffness and coordinate movement during landing when impaired by muscle fatigue has important implications for knee function. Unfortunately, the literature examining fatigue effects on landing mechanics suffers from a lack of consensus. Inconsistent results can be attributed to variable fatigue models, as well as grouping variable responses between individuals when statistically detecting differences between conditions. There remains a need to examine fatigue effects on knee function during landing with attention to these methodological limitations. Aim: The purpose of this study therefore, was to examine the effects of isokinetic fatigue on pre-impact muscle activity and post-impact knee mechanics during landing using singlesubject analysis. Methodology: Sixteen male university students (22.6+3.2 yrs; 1.78+0.07 m; 75.7+6.3 kg) performed maximal concentric and eccentric knee extensions in a reciprocal manner on an isokinetic dynamometer and step-landing trials on 2 occasions. On the first occasion each participant performed 20 step-landing trials from a knee-high platform followed by 75 maximal contractions on the isokinetic dynamometer. The isokinetic data was used to calculate the operational definition of fatigue. On the second occasion, with a minimum rest of 14 days, participants performed 2 sets of 20 step landing trials, followed by isokinetic exercise until the operational definition of fatigue was met and a final post-fatigue set of 20 step-landing trials. Results: Single-subject analyses revealed that isokinetic fatigue of the quadriceps induced variable responses in pre impact activation of knee extensors and flexors (frequency, onset timing and amplitude) and post-impact knee mechanics(stiffness and coordination). In general however, isokinetic fatigue induced sig nificant (p<0.05) reductions in quadriceps activation frequency, delayed onset and increased amplitude. In addition, knee stiffness was significantly (p<0.05) increased in some individuals, as well as impaired sagittal coordination. Conclusions: Pre impact activation and post-impact mechanics were adjusted in patterns that were unique to the individual, which could not be identified using traditional group-based statistical analysis. The results suggested that individuals optimised knee function differently to satisfy competing demands, such as minimising energy expenditure, as well as maximising joint stability and sensory information.
Resumo:
Problem, research strategy, and findings: The privatization of airports in Australia included airport property development rights, regulated only by federal, not local, land use control. Airports then developed commercial and retail centers outside local community plans, resulting in a history of poor coordination of planning and reflecting strong differences between public and private values in the role of the airport. Private owners embraced the concept of an Airport City, envisioning the airport as a portal of global infrastructure, whereas public planning agencies are struggling with infrastructure coordination and the development of real estate outside of the local planning regulations. Stakeholder workshops were conducted in each of the cases where key stakeholders from airports, regulating agencies, state and local governments participated in identifying key issues impacting the planning in and around airports. This research demonstrates that if modes of infrastructure provision change significantly (such as through privatization of public services), that transformation would best be accompanied by comprehensive changes in planning regimes to accommodate metropolitan and airport interdependencies. Privatization has exacerbated the poor coordination of planning in the past, and a focus on coordination between public and private infrastructure planning is needed to overcome differences in values and interests. Takeaway for practice: Governance styles differ considerably between public agencies and private corporations. Planners should understand the drivers and value differences to better coordinate infrastructure delivery and effective planning. Research support: The Airport Metropolis Research Project under the Australian Research Council's Linkage Projects funding scheme (LP0775225).
Resumo:
As evidenced with the 2011 floods the state of Queensland in Australia is quite vulnerable to this kind of disaster. Climate change will increase the frequency and magnitude of such events and will have a variety of other impacts. To deal with these governments at all levels need to be prepared and work together. Since most of the population of the state is located in the coastal areas and these areas are more vulnerable to the impacts of climate change this paper examines climate change adaptation efforts in coastal Queensland. The paper is part of a more comprehensive project which looks at the critical linkages between land use and transport planning in coastal Queensland, especially in light of increased frequencies of cyclonic activity and other impacts associated with climate change. The aim is improving coordination between local and state government in addressing land use and transport planning in coastal high hazard areas. By increasing the ability of local governments and state agencies to coordinate planning activities, we can help adapt to impacts of climate change. Towards that end, we will look at the ways that these groups currently interact, especially with regard to issues involving uncertainty related to climate change impacts. Through surveys and interviews of Queensland coastal local governments and state level planning agencies on how they coordinate their planning activities at different levels as well as how much they take into account the linkage of transportation and land use we aim to identify the weaknesses of the current planning system in responding to the challenges of climate change adaptation. The project will identify opportunities for improving the ways we plan and coordinate planning, and make recommendations to improve resilience in advance of disasters so as to help speed up recovery when they occur.
Resumo:
Fast calculation of quantities such as in-cylinder volume and indicated power is important in internal combustion engine research. Multiple channels of data including crank angle and pressure were collected for this purpose using a fully instrumented diesel engine research facility. Currently, existing methods use software to post-process the data, first calculating volume from crank angle, then calculating the indicated work and indicated power from the area enclosed by the pressure-volume indicator diagram. Instead, this work investigates the feasibility of achieving real-time calculation of volume and power via hardware implementation on Field Programmable Gate Arrays (FPGAs). Alternative hardware implementations were investigated using lookup tables, Taylor series methods or the CORDIC (CoOrdinate Rotation DIgital Computer) algorithm to compute the trigonometric operations in the crank angle to volume calculation, and the CORDIC algorithm was found to use the least amount of resources. Simulation of the hardware based implementation showed that the error in the volume and indicated power is less than 0.1%.
Resumo:
This paper presents a shared autonomy control scheme for a quadcopter that is suited for inspection of vertical infrastructure — tall man-made structures such as streetlights, electricity poles or the exterior surfaces of buildings. Current approaches to inspection of such structures is slow, expensive, and potentially hazardous. Low-cost aerial platforms with an ability to hover now have sufficient payload and endurance for this kind of task, but require significant human skill to fly. We develop a control architecture that enables synergy between the ground-based operator and the aerial inspection robot. An unskilled operator is assisted by onboard sensing and partial autonomy to safely fly the robot in close proximity to the structure. The operator uses their domain knowledge and problem solving skills to guide the robot in difficult to reach locations to inspect and assess the condition of the infrastructure. The operator commands the robot in a local task coordinate frame with limited degrees of freedom (DOF). For instance: up/down, left/right, toward/away with respect to the infrastructure. We therefore avoid problems of global mapping and navigation while providing an intuitive interface to the operator. We describe algorithms for pole detection, robot velocity estimation with respect to the pole, and position estimation in 3D space as well as the control algorithms and overall system architecture. We present initial results of shared autonomy of a quadrotor with respect to a vertical pole and robot performance is evaluated by comparing with motion capture data.
Resumo:
The 2011 floods illustrated once again Queensland’s vulnerability to flooding and similar disasters. Climate change will increase the frequency and magnitude of such events and will have a variety of other impacts. To deal with these impacts governments at all levels need to be prepared and work together. Like the rest of the nation most of the population of the state is located in the coastal areas and these areas are more vulnerable to the impacts of climate change. This paper examines climate change adaptation efforts in coastal Queensland. The aim is increasing local disaster resilience of people and property through fostering coordination between local and state government planning activities in coastal high hazard areas. By increasing the ability of local governments and state agencies to coordinate planning activities, we can help adapt to impacts of climate change. Towards that end, we will look at the ways that these groups currently interact, especially with regard to issues involving uncertainty related to climate change impacts. Through an examination of climate change related activities by Queensland’s coastal local governments and state level planning agencies and how they coordinate their planning activities at different levels we aim to identify the weaknesses of the current planning system in responding to the challenges of climate change adaptation and opportunities for improving the ways we plan and coordinate planning, and make recommendations to improve resilience in advance of disasters so as to help speed up recovery when they occur.
Resumo:
A satellite based observation system can continuously or repeatedly generate a user state vector time series that may contain useful information. One typical example is the collection of International GNSS Services (IGS) station daily and weekly combined solutions. Another example is the epoch-by-epoch kinematic position time series of a receiver derived by a GPS real time kinematic (RTK) technique. Although some multivariate analysis techniques have been adopted to assess the noise characteristics of multivariate state time series, statistic testings are limited to univariate time series. After review of frequently used hypotheses test statistics in univariate analysis of GNSS state time series, the paper presents a number of T-squared multivariate analysis statistics for use in the analysis of multivariate GNSS state time series. These T-squared test statistics have taken the correlation between coordinate components into account, which is neglected in univariate analysis. Numerical analysis was conducted with the multi-year time series of an IGS station to schematically demonstrate the results from the multivariate hypothesis testing in comparison with the univariate hypothesis testing results. The results have demonstrated that, in general, the testing for multivariate mean shifts and outliers tends to reject less data samples than the testing for univariate mean shifts and outliers under the same confidence level. It is noted that neither univariate nor multivariate data analysis methods are intended to replace physical analysis. Instead, these should be treated as complementary statistical methods for a prior or posteriori investigations. Physical analysis is necessary subsequently to refine and interpret the results.
Resumo:
Voltage rise is one of the main factors which limits the capacity of Low Voltage (LV) network to accommodate more Renewable Energy (RE) sources. This paper proposes a robust and effective approach to coordinate customers’ resources and manage voltage rise in residential LV networks. PV is considered as the customer RE source. The suggested coordination approach in this paper includes both localized control strategy, based on local measurement, and distributed control strategy based on consensus algorithm. This approach can completely avoid maximum permissible voltage limit violation. A typical residential LV network is used as the case study where the simulated results are shown to verify the effectiveness of the proposed approach.
Resumo:
The Theory of the Growth of The Firm by Edith Penrose, first published in 1959, is a seminal contribution to the field of management. Penrose's intention was to create a theory of firm growth which was logically consistent and empirically tractable (Buckley and Casson, 2007). Much attention, however, has been focused on her unintended contribution to the resource-based view (henceforth RBV) (e.g. Kor and Mahoney, 2004; Lockett and Thompson, 2004) rather than her firm growth theory. We feel that this is unfortunate because despite a rapidly growing body of empirical work, conceptual advancement in growth studies has been limited (Davidsson and Wiklund, 2000; Davidsson et ai., 2006; Delmar, 1997; Storey, 1994). The growth literature frequently references Penrose's work, but little explicit testing of her ideas has been undertaken. This is surprising given that Penrose's work remains the most comprehensive theory of growth to date. One explanation is that she did not formality present her arguments, favouring verbal exposition over formalized models (Lockett, 2005; Lockett and Thompson, 2004). However, the central propositions and conclusions of her theory can be operationalized and empirically tested.
Resumo:
A number of mathematical models investigating certain aspects of the complicated process of wound healing are reported in the literature in recent years. However, effective numerical methods and supporting error analysis for the fractional equations which describe the process of wound healing are still limited. In this paper, we consider the numerical simulation of a fractional mathematical model of epidermal wound healing (FMM-EWH), which is based on the coupled advection-diffusion equations for cell and chemical concentration in a polar coordinate system. The space fractional derivatives are defined in the Left and Right Riemann-Liouville sense. Fractional orders in the advection and diffusion terms belong to the intervals (0, 1) or (1, 2], respectively. Some numerical techniques will be used. Firstly, the coupled advection-diffusion equations are decoupled to a single space fractional advection-diffusion equation in a polar coordinate system. Secondly, we propose a new implicit difference method for simulating this equation by using the equivalent of Riemann-Liouville and Grünwald-Letnikov fractional derivative definitions. Thirdly, its stability and convergence are discussed, respectively. Finally, some numerical results are given to demonstrate the theoretical analysis.
Resumo:
This text explores the area of advertising and promotion practice. It shows how real organisations coordinate the various elements of the promotional mix with other marketing activities."--Provided by publisher
Resumo:
Learning Objective: To describe a collaborative system of clinical allocations using a dedicated, discipline specific administrative coordinator. Methods: The Clinical Placement Coordinator is the liaison person between the student, the academic staff and the clinical sites, and fills an important role in bridging the gap to enhance the student learning experience. With this in mind the Coordinator is very discipline focused and works closely with the academic staff who coordinate the clinical units within the program. This person is the ‘‘face’’ of QUT to the external stakeholders, and ensures that all parties experience a smooth process. This no mean feat given that there are over 350 students to be placed annually, across 14 separate clinical blocks ranging from 1 to 6 weeks in length at various sites. The processes involved in clinical placement allocation will be presented, and the roles of the staff in facilitating students’ placement preferences and matching with clinical site offers will be described. In many allied health programs in Australia, the clinical placement activity is carried out by an academic member of staff. However, this can result in delays in communications due to other workload requirements such as lecture, tutorial and practical class commitments. Having a dedicated knowledgeable administration officer has resulted in a person being available to take calls from clinical staff, meet with students to discuss allocation needs and ensure that academic staff are consulted if and when necessary. The Clinical Placement Coordinator is very much a part of the course team and attends professional meetings and conferences as an avenue of networking and meeting clinical staff. Results: The success in having a dedicated administrative officer as the Clinical Placement Coordinator acting as the conduit between academic staff and students, and the university and clinical staff has been highly successful to date. This was noted in commendations from the 2010 Course Accreditation Panel Report which stated: ‘‘The very positive perception in the professional community of Ms Margaret McBurney’s effective and efficient organization of student clinical placements. Students and clinical professionals commented favourably on the approachability of staff. There is confidence that program staff will follow up on issues raised urgently in clinical centres.’’
Resumo:
Often voltage rise along low voltage (LV) networks limits their capacity to accommodate more renewable energy (RE) sources. This paper proposes a robust and effective approach to coordinate customers' resources and control voltage rise in LV networks, where photovoltaics (PVs) are considered as the RE sources. The proposed coordination algorithm includes both localized and distributed control strategies. The localized strategy determines the value of PV inverter active and reactive power, while the distributed strategy coordinates customers' energy storage units (ESUs). To verify the effectiveness of proposed approach, a typical residential LV network is used and simulated in the PSCAD-EMTC platform.
Resumo:
This paper proposes a distributed control approach to coordinate multiple energy storage units (ESUs) to avoid violation of voltage and thermal constraints, which are some of the main power quality challenges for future distribution networks. ESUs usually are connected to a network through voltage source converters. In this paper, both ESU converters active and reactive power are used to deal with the above mentioned power quality issues. ESUs' reactive power is proposed to be used for voltage support, while the active power is to be utilized in managing network loading. Two typical distribution networks are used to apply the proposed method, and the simulated results are illustrated in this paper to show the effectiveness of this approach.