386 resultados para autonomous learning systems


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Abstract. For interactive systems, recognition, reproduction, and generalization of observed motion data are crucial for successful interaction. In this paper, we present a novel method for analysis of motion data that we refer to as K-OMM-trees. K-OMM-trees combine Ordered Means Models (OMMs) a model-based machine learning approach for time series with an hierarchical analysis technique for very large data sets, the K-tree algorithm. The proposed K-OMM-trees enable unsupervised prototype extraction of motion time series data with hierarchical data representation. After introducing the algorithmic details, we apply the proposed method to a gesture data set that includes substantial inter-class variations. Results from our studies show that K-OMM-trees are able to substantially increase the recognition performance and to learn an inherent data hierarchy with meaningful gesture abstractions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Time and space are fundamental to human language and embodied cognition. In our early work we investigated how Lingodroids, robots with the ability to build their own maps, could evolve their own geopersonal spatial language. In subsequent studies we extended the framework developed for learning spatial concepts and words to learning temporal intervals. This paper considers a new aspect of time, the naming of concepts like morning, afternoon, dawn, and dusk, which are events that are part of day-night cycles, but are not defined by specific time points on a clock. Grounding of such terms refers to events and features of the diurnal cycle, such as light levels. We studied event-based time in which robots experienced day-night cycles that varied with the seasons throughout a year. Then we used meet-at tasks to demonstrate that the words learned were grounded, where the times to meet were morning and afternoon, rather than specific clock times. The studies show how words and concepts for a novel aspect of cyclic time can be grounded through experience with events rather than by times as measured by clocks or calendars

Relevância:

40.00% 40.00%

Publicador:

Resumo:

With the aim of advancing professional practice through better understanding how to create workplace contexts that cultivate individual and collective learning through situated 'information in context' experiences, this paper presents insights gained from three North American collaborative design (co-design) implementations. In the current project at the Auraria Library in Denver, Colorado, USA, participants use collaborative information practices to redesign face-to-face and technology-enabled communication, decision making, and planning systems. Design processes are described and results-to-date described, within an appreciative framework which values information sharing and enables knowledge creation through shared leadership.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper we present a method for autonomously tuning the threshold between learning and recognizing a place in the world, based on both how the rodent brain is thought to process and calibrate multisensory data and the pivoting movement behaviour that rodents perform in doing so. The approach makes no assumptions about the number and type of sensors, the robot platform, or the environment, relying only on the ability of a robot to perform two revolutions on the spot. In addition, it self-assesses the quality of the tuning process in order to identify situations in which tuning may have failed. We demonstrate the autonomous movement-driven threshold tuning on a Pioneer 3DX robot in eight locations spread over an office environment and a building car park, and then evaluate the mapping capability of the system on journeys through these environments. The system is able to pick a place recognition threshold that enables successful environment mapping in six of the eight locations while also autonomously flagging the tuning failure in the remaining two locations. We discuss how the method, in combination with parallel work on autonomous weighting of individual sensors, moves the parameter dependent RatSLAM system significantly closer to sensor, platform and environment agnostic operation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The fastest-growing segment of jobs in the creative sector are in those firms that provide creative services to other sectors (Hearn, Goldsmith, Bridgstock, Rodgers 2014, this volume; Cunningham 2014, this volume). There are also a large number of Creative Services (Architecture and Design, Advertising and Marketing, Software and Digital Content occupations) workers embedded in organizations in other industry sectors (Cunningham and Higgs 2009). Ben Goldsmith (2014, this volume) shows, for example, that the Financial Services sector is the largest employer of digital creative talent in Australia. But why should this be? We argue it is because ‘knowledge-based intangibles are increasingly the source of value creation and hence of sustainable competitive advantage (Mudambi 2008, 186). This value creation occurs primarily at the research and development (R and D) and the marketing ends of the supply chain. Both of these areas require strong creative capabilities in order to design for, and to persuade, consumers. It is no surprise that Jess Rodgers (2014, this volume), in a study of Australia’s Manufacturing sector, found designers and advertising and marketing occupations to be the most numerous creative occupations. Greg Hearn and Ruth Bridgstock (2013, forthcoming) suggest ‘the creative heart of the creative economy […] is the social and organisational routines that manage the generation of cultural novelty, both tacit and codified, internal and external, and [cultural novelty’s] combination with other knowledges […] produce and capture value’. 2 Moreover, the main “social and organisational routine” is usually a team (for example, Grabher 2002; 2004).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Education systems have a key role to play in preparing future citizens to engage in sustainable living practices and help create a more sustainable world. Many schools throughout Australia have begun to develop whole-school approaches to sustainability education that are supported by national and state policies and curriculum frameworks. Preservice teacher education, however, lags behind in building the capacity of new teachers to initiate and implement such approaches (ARIES, 2010). This proposed project seeks to develop a state-wide systems approach to embedding Education for Sustainability (EfS) in teacher education that is aligned with the Australian National Curriculum and the aspirations for EfS in the Melbourne Declaration and other national documents. Representatives from all teacher education institutions and other agents of change in the Queensland education system will be engaged in a multilevel systems approach, involving collaboration at the state, institutional and course levels, to develop curriculum practices that reflect a shared vision of EfS.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

It is well recognized that many scientifically interesting sites on Mars are located in rough terrains. Therefore, to enable safe autonomous operation of a planetary rover during exploration, the ability to accurately estimate terrain traversability is critical. In particular, this estimate needs to account for terrain deformation, which significantly affects the vehicle attitude and configuration. This paper presents an approach to estimate vehicle configuration, as a measure of traversability, in deformable terrain by learning the correlation between exteroceptive and proprioceptive information in experiments. We first perform traversability estimation with rigid terrain assumptions, then correlate the output with experienced vehicle configuration and terrain deformation using a multi-task Gaussian Process (GP) framework. Experimental validation of the proposed approach was performed on a prototype planetary rover and the vehicle attitude and configuration estimate was compared with state-of-the-art techniques. We demonstrate the ability of the approach to accurately estimate traversability with uncertainty in deformable terrain.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The vast majority of current robot mapping and navigation systems require specific well-characterized sensors that may require human-supervised calibration and are applicable only in one type of environment. Furthermore, if a sensor degrades in performance, either through damage to itself or changes in environmental conditions, the effect on the mapping system is usually catastrophic. In contrast, the natural world presents robust, reasonably well-characterized solutions to these problems. Using simple movement behaviors and neural learning mechanisms, rats calibrate their sensors for mapping and navigation in an incredibly diverse range of environments and then go on to adapt to sensor damage and changes in the environment over the course of their lifetimes. In this paper, we introduce similar movement-based autonomous calibration techniques that calibrate place recognition and self-motion processes as well as methods for online multisensor weighting and fusion. We present calibration and mapping results from multiple robot platforms and multisensory configurations in an office building, university campus, and forest. With moderate assumptions and almost no prior knowledge of the robot, sensor suite, or environment, the methods enable the bio-inspired RatSLAM system to generate topologically correct maps in the majority of experiments.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Informed Systems Approach offers models for advancing workplace learning within collaboratively designed systems that promote using information to learn through collegial exchange and reflective dialogue. This systemic approach integrates theoretical antecedents and process models, including the learning theories of Peter Checkland (Soft Systems Methodology), which advance systems design and informed action, and Christine Bruce (informed learning), which generate information experiences and professional practices. Ikujiro Nonaka’s systems ideas (SECI model) and Mary Crossan’s learning framework (4i framework) further animate workplace knowledge creation through learning relationships engaging individuals with ideas.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The introduction of online delivery platforms such as learning management systems (LMS) in tertiary education has changed the methods and modes of curriculum delivery and communication. While course evaluation methods have also changed from paper-based in-class-administered methods to largely online-administered methods, the data collection instruments have remained unchanged. This paper reports on a small exploratory study of two tertiary-level courses. The study investigated why design of the instruments and methods to administer surveys in the courses are ineffective measures against the intrinsic characteristics of online learning. It reviewed the students' response rates of the conventional evaluations for the courses over an eight-year period. It then compared a newly developed online evaluation and the conventional methods over a two-year period. The results showed the response rates with the new evaluation method increased by more than 80% from the average of the conventional evaluations (below 30%), and the students' written feedback was more detailed and comprehensive than in the conventional evaluations. The study demonstrated the possibility that the LMS-based learning evaluation can be effective and efficient in terms of the quality of students' participation and engagement in their learning, and for an integrated pedagogical approach in an online learning environment.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Discounted Cumulative Gain (DCG) is a well-known ranking evaluation measure for models built with multiple relevance graded data. By handling tagging data used in recommendation systems as an ordinal relevance set of {negative,null,positive}, we propose to build a DCG based recommendation model. We present an efficient and novel learning-to-rank method by optimizing DCG for a recommendation model using the tagging data interpretation scheme. Evaluating the proposed method on real-world datasets, we demonstrate that the method is scalable and outperforms the benchmarking methods by generating a quality top-N item recommendation list.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper details the development of an online adaptive control system, designed to learn from the actions of an instructing pilot. Three learning architectures, single layer neural networks (SLNN), multi-layer neural networks (MLNN), and fuzzy associative memories (FAM) are considerd. Each method has been tested in simulation. While the SLNN and MLNN provided adequate control under some simulation conditions, the addition of pilot noise and pilot variation during simulation training caused these methods to fail.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis explored the state of the use of e-learning tools within Learning Management Systems in higher education and developed a distinct framework to explain the factors influencing users' engagement with these tools. The study revealed that the Learning Management System design, preferences for other tools, availability of time, lack of adequate knowledge about tools, pedagogical practices, and social influences affect the uptake of Learning Management System tools. Semi structured interviews with 74 students and lecturers of a major Australian university were used as a source of data. The applied thematic analysis method was used to analyse the collected data.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper details the design and performance assessment of a unique collision avoidance decision and control strategy for autonomous vision-based See and Avoid systems. The general approach revolves around re-positioning a collision object in the image using image-based visual servoing, without estimating range or time to collision. The decision strategy thus involves determining where to move the collision object, to induce a safe avoidance manuever, and when to cease the avoidance behaviour. These tasks are accomplished by exploiting human navigation models, spiral motion properties, expected image feature uncertainty and the rules of the air. The result is a simple threshold based system that can be tuned and statistically evaluated by extending performance assessment techniques derived for alerting systems. Our results demonstrate how autonomous vision-only See and Avoid systems may be designed under realistic problem constraints, and then evaluated in a manner consistent to aviation expectations.