96 resultados para Warren
Resumo:
In most visual mapping applications suited to Autonomous Underwater Vehicles (AUVs), stereo visual odometry (VO) is rarely utilised as a pose estimator as imagery is typically of very low framerate due to energy conservation and data storage requirements. This adversely affects the robustness of a vision-based pose estimator and its ability to generate a smooth trajectory. This paper presents a novel VO pipeline for low-overlap imagery from an AUV that utilises constrained motion and integrates magnetometer data in a bi-objective bundle adjustment stage to achieve low-drift pose estimates over large trajectories. We analyse the performance of a standard stereo VO algorithm and compare the results to the modified vo algorithm. Results are demonstrated in a virtual environment in addition to low-overlap imagery gathered from an AUV. The modified VO algorithm shows significantly improved pose accuracy and performance over trajectories of more than 300m. In addition, dense 3D meshes generated from the visual odometry pipeline are presented as a qualitative output of the solution.
Resumo:
Background and Objectives Laser tissue repair usually relies on hemoderivate protein solders, based on serum albumin. These solders have intrinsic limitations that impair their widespread use, such as limited tensile strength of repaired tissue, poor solder solubility, and brittleness prior to laser denaturation. Furthermore, the required activation temperature of albumin solders (between 65 and 70°C) can induce significant thermal damage to tissue. In this study, we report on the design of a new polysaccharide adhesive for tissue repair that overcomes some of the shortcomings of traditional solders. Study Design/Materials and Methods Flexible and insoluble strips of chitosan adhesive (elastic modulus ~6.8 Mpa, surface area ~34 mm2, thickness ~20 µm) were bonded onto rectangular sections of sheep intestine using a diode laser (continuous mode, 120 ± 10 mW, = λ 808 nm) through a multimode optical fiber with an irradiance of ~15 W/cm2. The adhesive was based on chitosan and also included indocyanin green dye (IG). The temperature between tissue and adhesive was measured using a small thermocouple (diameter ~0.25 mm) during laser irradiation. The repaired tissue was tested for tensile strength by a calibrated tensiometer. Murine fibroblasts were cultured in extracted media from chitosan adhesive to assess cytotoxicity via cell growth inhibition in a 48 hours period. Results Chitosan adhesive successfully repaired intestine tissue, achieving a tensile strength of 14.7 ± 4.7 kPa (mean ± SD, n = 30) at a temperature of 60-65°C. Media extracted from chitosan adhesive showed negligible toxicity to fibroblast cells under the culture conditions examined here. Conclusion A novel chitosan-based adhesive has been developed, which is insoluble, flexible, and adheres firmly to tissue upon infrared laser activation.
Resumo:
Most teachers recognise the importance of mathematics teaching and learning in early years but there is not consensus on how and when this learning should occur. Young-Loveridge (cited in de Vries, Thomas, and Warren, 2010) suggests that quality early mathematical experiences are a key determinant to later achievement.
Resumo:
Beginning in 1974, a limited effort to collect extraterrestrial dust samples from the stratosphere using impactors mounted on NASA U-2 aircraft was initiated at NASA Ames Research Center (1). Subsequent studies (e.g. 1-9) have clearly established an extraterrestrial origin for some of the material. Attrition of comets is considered to be one of the potential sources of extraterrestrial dust(1,5). Additionally, some of the particles appear to represent a type of primitive material not represented in meteorite collections. In order to provide a greater availability of these samples to the scientific community, NASA-Johnson Space Center (JSC) began in May of 1981 a program dedicated to the systematic collection and curation of cosmic dust for scientific investigation. Collections were made at 18 to 20 km altitude by means of collectors mounted under the wings of a WB57F. When the aircraft reaches operating altitude, the collector plates (impactors) are extended into the ambient airstream with the collection surface normal to the airflow. To prevent particles from bouncing off the surface, the impactors are coated with a film of high viscosity silicone oil. The impactors are sealed in canisters to minimize contamination when not collecting.
Resumo:
This paper focuses on very young students' ability to engage in repeating pattern tasks and identifying strategies that assist them to ascertain the structure of the pattern. It describes results of a study which is part of the Early Years Generalising Project (EYGP) and involves Australian students in Years 1 to 4 (ages 5-10). This paper reports on the results from the early years' cohort (Year 1 and 2 students). Clinical interviews were used to collect data concerning students' ability to determine elements in different positions when two units of a repeating pattern were shown. This meant that students were required to identify the multiplicative structure of the pattern. Results indicate there are particular strategies that assist students to predict these elements, and there appears to be a hierarchy of pattern activities that help students to understand the structure of repeating patterns.
Resumo:
This paper presents a recursive strategy for online detection of actuator faults on a unmanned aerial system (UAS) subjected to accidental actuator faults. The proposed detection algorithm aims to provide a UAS with the capability of identifying and determining characteristics of actuator faults, offering necessary flight information for the design of fault-tolerant mechanism to compensate for the resultant side-effect when faults occur. The proposed fault detection strategy consists of a bank of unscented Kalman filters (UKFs) with each one detecting a specific type of actuator faults and estimating correspond- ing velocity and attitude information. Performance of the proposed method is evaluated using a typical nonlinear UAS model and it is demonstrated in simulations that our method is able to detect representative faults with a sufficient accuracy and acceptable time delay, and can be applied to the design of fault-tolerant flight control systems of UASs.
Resumo:
Stereo-based visual odometry algorithms are heavily dependent on an accurate calibration of the rigidly fixed stereo pair. Even small shifts in the rigid transform between the cameras can impact on feature matching and 3D scene triangulation, adversely affecting pose estimates and applications dependent on long-term autonomy. In many field-based scenarios where vibration, knocks and pressure change affect a robotic vehicle, maintaining an accurate stereo calibration cannot be guaranteed over long periods. This paper presents a novel method of recalibrating overlapping stereo camera rigs from online visual data while simultaneously providing an up-to-date and up-to-scale pose estimate. The proposed technique implements a novel form of partitioned bundle adjustment that explicitly includes the homogeneous transform between a stereo camera pair to generate an optimal calibration. Pose estimates are computed in parallel to the calibration, providing online recalibration which seamlessly integrates into a stereo visual odometry framework. We present results demonstrating accurate performance of the algorithm on both simulated scenarios and real data gathered from a wide-baseline stereo pair on a ground vehicle traversing urban roads.
Resumo:
Stereo visual odometry has received little investigation in high altitude applications due to the generally poor performance of rigid stereo rigs at extremely small baseline-to-depth ratios. Without additional sensing, metric scale is considered lost and odometry is seen as effective only for monocular perspectives. This paper presents a novel modification to stereo based visual odometry that allows accurate, metric pose estimation from high altitudes, even in the presence of poor calibration and without additional sensor inputs. By relaxing the (typically fixed) stereo transform during bundle adjustment and reducing the dependence on the fixed geometry for triangulation, metrically scaled visual odometry can be obtained in situations where high altitude and structural deformation from vibration would cause traditional algorithms to fail. This is achieved through the use of a novel constrained bundle adjustment routine and accurately scaled pose initializer. We present visual odometry results demonstrating the technique on a short-baseline stereo pair inside a fixed-wing UAV flying at significant height (~30-100m).
Resumo:
Achieving a robust, accurately scaled pose estimate in long-range stereo presents significant challenges. For large scene depths, triangulation from a single stereo pair is inadequate and noisy. Additionally, vibration and flexible rigs in airborne applications mean accurate calibrations are often compromised. This paper presents a technique for accurately initializing a long-range stereo VO algorithm at large scene depth, with accurate scale, without explicitly computing structure from rigidly fixed camera pairs. By performing a monocular pose estimate over a window of frames from a single camera, followed by adding the secondary camera frames in a modified bundle adjustment, an accurate, metrically scaled pose estimate can be found. To achieve this the scale of the stereo pair is included in the optimization as an additional parameter. Results are presented both on simulated and field gathered data from a fixed-wing UAV flying at significant altitude, where the epipolar geometry is inaccurate due to structural deformation and triangulation from a single pair is insufficient. Comparisons are made with more conventional VO techniques where the scale is not explicitly optimized, and demonstrated over repeated trials to indicate robustness.
Resumo:
This paper presents a recursive strategy for online detection of actuator faults on a unmanned aerial system (UAS) subjected to accidental actuator faults. The proposed detection algorithm aims to provide a UAS with the capability of identifying and determining characteristics of actuator faults, offering necessary flight information for the design of fault-tolerant mechanism to compensate for the resultant side-effect when faults occur. The proposed fault detection strategy consists of a bank of unscented Kalman filters (UKFs) with each one detecting a specific type of actuator faults and estimating corresponding velocity and attitude information. Performance of the proposed method is evaluated using a typical nonlinear UAS model and it is demonstrated in simulations that our method is able to detect representative faults with a sufficient accuracy and acceptable time delay, and can be applied to the design of fault-tolerant flight control systems of UASs.
Resumo:
This study is about young adolescents' engagement in learning science. The middle years of schooling are critical in the development of students' interest and engagement with learning. Successful school experiences enhance dispositions towards a career related to those experiences. Poor experiences lead to negative attitudes and rejection of certain career pathways. At a time when students are becoming more aware, more independent and focused on peer relationships and social status, the high school environment in some circumstances offers more a content-centred curriculum that is less personally relevant to their lives than the social melee surrounding them. Science education can further exacerbate the situation by presenting abstract concepts that have limited contextual relevance and a seemingly difficult vocabulary that further alienates adolescents from the curriculum. In an attempt to reverse a perceived growing disinterest by students to science (Goodrum, Druhan & Abbs, 2011), a study was initiated based on a student-centred unit designed to enhance and sustain adolescent engagement in science. The premise of the study was that adolescent students are more responsive toward learning if they are given an appropriate learning environment that helps connect their learning with life beyond the school. The purpose of this study was to examine the experiences of young adolescents with the aim of transforming school learning in science into meaningful experiences that connected with their lives. Two areas were specifically canvassed and subsumed within the study to strengthen the design base. One area that of the middle schooling ideology, offered specific pedagogical approaches and a philosophical framework that could provide opportunities for reform. The other area, the construct of scientific literacy (OECD, 2007) as defined by Holbrook and Rannikmae, (2009) appeared to provide a sense of purpose for students to aim toward and value for becoming active citizens. The study reported here is a self-reflection of a teacher/researcher exploring practice and challenging existing approaches to the teaching of science in the middle years of schooling. The case study approach (Yin, 2003) was adopted to guide the design of the study. Over a 6-month period, the researcher, an experienced secondary-science teacher, designed, implemented and documented a range of student-centred pedagogical practices with a Year-7 secondary science class. Data for this case study included video recordings, journals, interviews and surveys of students. Both quantitative and qualitative data sources were employed in a partially mixed methods research approach (Leech & Onwuegbuzie, 2009) dominated by qualitative data with the concurrent collection of quantitative data to corroborate interpretations as a means of analysing and developing a model of the dynamic learning environment. The findings from the case study identified five propositions that became the basis for a model of a student-centred learning environment that was able to sustain student participation and thus engagement in science. The study suggested that adolescent student engagement can be promoted and sustained by providing a classroom climate that encourages and strengthens social interaction. Engagement in science can be enhanced by presenting developmentally appropriate challenges that require rigorous exploration of contextually relevant learning environments; supporting students to develop connections with a curriculum that aligns with their own experiences. By setting an environment empathetic to adolescent needs and understandings, students were able to actively explore phenomena collaboratively through developmentally appropriate experiences. A significant outcome of this study was the transformative experiences of an insider, the teacher as researcher, whose reflections provide an authentic model for reforming pedagogy. The model and theory presented became an adjunct to my repertoire for science teaching in the middle years of schooling. The study was rewarding in that it helped address a void in my understanding of middle years of schooling by prompting me to re-think the notion of adolescence in the context of the science classroom. This study is timely given the report "The Status and Quality of Year 11 and 12 Science in Australian Schools" (Goodrum, Druhan & Abbs, 2011) and national curricular changes that are being proposed for science (ACARA, 2009).