214 resultados para Vision, Monocular.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: Students with low vision may be disadvantaged when compared with their normally sighted peers, as they frequently work at very short working distances and need to use low vision devices. The aim of this study was to examine the sustained reading rates of students with low vision and compare them with their peers with normal vision. The effects of visual acuity, acuity reserve and age on reading rate were also examined. Method: Fifty-six students (10 to 16 years of age), 26 with low vision and 30 with normal vision were required to read text continuously for 30 minutes. Their position in the text was recorded at two-minute intervals. Distance and near visual acuity, working distance, cause of low vision, reading rates and reading habits were recorded. Results: A total of 80.7 per cent of the students with low vision maintained a constant reading rate during the 30 minutes of reading, although they read at approximately half the rate (104 wpm) compared with their normally sighted peers (195 wpm). Only four of the low vision subjects could not complete the reading task. Reading rates increased significantly with acuity reserve and distance and near visual acuity but there was no significant relationship between age and sustained reading rate. Conclusions: The majority of students with low vision were able to maintain appropriate reading rates to cope in integrated educational settings. Surprisingly only relatively few subjects (16 per cent) used their prescribed low vision devices even though the average accommodative demand was 9 D and generally, they revealed a greater dislike of reading compared to students with normal vision.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: In 1970, Enright observed a distortion of perceived driving speed, induced by monocular application of a neutral density (ND) filter. If a driver looks out of the right side of a vehicle with a filter over the right eye, the driver perceives a reduction of the vehicle’s apparent velocity, while applying a ND filter over the left eye increases the vehicle’s apparent velocity. The purpose of the current study was to provide the first empirical measurements of the Enright phenomenon. Methods: Ten experienced drivers were tested and drove an automatic sedan on a closed road circuit. Filters (0.9 ND) were placed over the left, right or both eyes during a driving run, in addition to a control condition with no filters in place. Subjects were asked to look out of the right side of the car and adjust their driving speed to either 40 km/h or 60 km/h. Results: Without a filter or with both eyes filtered subjects showed good estimation of speed when asked to travel at 60 km/h but travelled a mean of 12 to 14 km/h faster than the requested 40 km/h. Subjects travelled faster than these baselines by a mean of 7 to 9 km/h (p < 0.001) with the filter over their right eye, and 3 to 5 km/h slower with the filter over their left eye (p < 0.05). Conclusions: The Enright phenomenon causes significant and measurable distortions of perceived driving speed under realworld driving conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Competent navigation in an environment is a major requirement for an autonomous mobile robot to accomplish its mission. Nowadays, many successful systems for navigating a mobile robot use an internal map which represents the environment in a detailed geometric manner. However, building, maintaining and using such environment maps for navigation is difficult because of perceptual aliasing and measurement noise. Moreover, geometric maps require the processing of huge amounts of data which is computationally expensive. This thesis addresses the problem of vision-based topological mapping and localisation for mobile robot navigation. Topological maps are concise and graphical representations of environments that are scalable and amenable to symbolic manipulation. Thus, they are well-suited for basic robot navigation applications, and also provide a representational basis for the procedural and semantic information needed for higher-level robotic tasks. In order to make vision-based topological navigation suitable for inexpensive mobile robots for the mass market we propose to characterise key places of the environment based on their visual appearance through colour histograms. The approach for representing places using visual appearance is based on the fact that colour histograms change slowly as the field of vision sweeps the scene when a robot moves through an environment. Hence, a place represents a region of the environment rather than a single position. We demonstrate in experiments using an indoor data set, that a topological map in which places are characterised using visual appearance augmented with metric clues provides sufficient information to perform continuous metric localisation which is robust to the kidnapped robot problem. Many topological mapping methods build a topological map by clustering visual observations to places. However, due to perceptual aliasing observations from different places may be mapped to the same place representative in the topological map. A main contribution of this thesis is a novel approach for dealing with the perceptual aliasing problem in topological mapping. We propose to incorporate neighbourhood relations for disambiguating places which otherwise are indistinguishable. We present a constraint based stochastic local search method which integrates the approach for place disambiguation in order to induce a topological map. Experiments show that the proposed method is capable of mapping environments with a high degree of perceptual aliasing, and that a small map is found quickly. Moreover, the method of using neighbourhood information for place disambiguation is integrated into a framework for topological off-line simultaneous localisation and mapping which does not require an initial categorisation of visual observations. Experiments on an indoor data set demonstrate the suitability of our method to reliably localise the robot while building a topological map.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated the relative importance of vision and proprioception in estimating target and hand locations in a dynamic environment. Subjects performed a position estimation task in which a target moved horizontally on a screen at a constant velocity and then disappeared. They were asked to estimate the position of the invisible target under two conditions: passively observing and manually tracking. The tracking trials included three visual conditions with a cursor representing the hand position: always visible, disappearing simultaneously with target disappearance, and always invisible. The target’s invisible displacement was systematically underestimated during passive observation. In active conditions, tracking with the visible cursor significantly decreased the extent of underestimation. Tracking of the invisible target became much more accurate under this condition and was not affected by cursor disappearance. In a second experiment, subjects were asked to judge the position of their unseen hand instead of the target during tracking movements. Invisible hand displacements were also underestimated when compared with the actual displacement. Continuous or brief presentation of the cursor reduced the extent of underestimation. These results suggest that vision–proprioception interactions are critical for representing exact target–hand spatial relationships, and that such sensorimotor representation of hand kinematics serves a cognitive function in predicting target position. We propose a hypothesis that the central nervous system can utilize information derived from proprioception and/or efference copy for sensorimotor prediction of dynamic target and hand positions, but that effective use of this information for conscious estimation requires that it be presented in a form that corresponds to that used for the estimations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The research described in this paper is directed toward increasing productivity of draglines through automation. In particular, it focuses on the swing-to-dump, dump, and return-to-dig phases of the dragline operational cycle by developing a swing automation system. In typical operation the dragline boom can be in motion for up to 80% of the total cycle time. This provides considerable scope for improving cycle time through automated or partially automated boom motion control. This paper describes machine vision based sensor technology and control algorithms under development to solve the problem of continuous real time bucket location and control. Incorporation of this capability into existing dragline control systems will then enable true automation of dragline swing and dump operations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper, which serves as an introduction to the mini-symposium on Real-Time Vision, Tracking and Control, provides a broad sketch of visual servoing, the application of real-time vision, tracking and control for robot guidance. It outlines the basic theoretical approaches to the problem, describes a typical architecture, and discusses major milestones, applications and the significant vision sub-problems that must be solved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Machine vision represents a particularly attractive solution for sensing and detecting potential collision-course targets due to the relatively low cost, size, weight, and power requirements of the sensors involved (as opposed to radar). This paper describes the development and evaluation of a vision-based collision detection algorithm suitable for fixed-wing aerial robotics. The system was evaluated using highly realistic vision data of the moments leading up to a collision. Based on the collected data, our detection approaches were able to detect targets at distances ranging from 400m to about 900m. These distances (with some assumptions about closing speeds and aircraft trajectories) translate to an advanced warning of between 8-10 seconds ahead of impact, which approaches the 12.5 second response time recommended for human pilots. We make use of the enormous potential of graphic processing units to achieve processing rates of 30Hz (for images of size 1024-by- 768). Currently, integration in the final platform is under way.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Machine vision represents a particularly attractive solution for sensing and detecting potential collision-course targets due to the relatively low cost, size, weight, and power requirements of vision sensors (as opposed to radar and TCAS). This paper describes the development and evaluation of a real-time vision-based collision detection system suitable for fixed-wing aerial robotics. Using two fixed-wing UAVs to recreate various collision-course scenarios, we were able to capture highly realistic vision (from an onboard camera perspective) of the moments leading up to a collision. This type of image data is extremely scarce and was invaluable in evaluating the detection performance of two candidate target detection approaches. Based on the collected data, our detection approaches were able to detect targets at distances ranging from 400m to about 900m. These distances (with some assumptions about closing speeds and aircraft trajectories) translate to an advanced warning of between 8-10 seconds ahead of impact, which approaches the 12.5 second response time recommended for human pilots. We overcame the challenge of achieving real-time computational speeds by exploiting the parallel processing architectures of graphics processing units found on commercially-off-the-shelf graphics devices. Our chosen GPU device suitable for integration onto UAV platforms can be expected to handle real-time processing of 1024 by 768 pixel image frames at a rate of approximately 30Hz. Flight trials using manned Cessna aircraft where all processing is performed onboard will be conducted in the near future, followed by further experiments with fully autonomous UAV platforms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the real time global vision system for the robot soccer team the RoboRoos. It has a highly optimised pipeline that includes thresholding, segmenting, colour normalising, object recognition and perspective and lens correction. It has a fast ‘paint’ colour calibration system that can calibrate in any face of the YUV or HSI cube. It also autonomously selects both an appropriate camera gain and colour gains robot regions across the field to achieve colour uniformity. Camera geometry calibration is performed automatically from selection of keypoints on the field. The system achieves a position accuracy of better than 15mm over a 4m × 5.5m field, and orientation accuracy to within 1°. It processes 614 × 480 pixels at 60Hz on a 2.0GHz Pentium 4 microprocessor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Simultaneous Localization And Mapping (SLAM) is one of the major challenges in mobile robotics. Probabilistic techniques using high-end range finding devices are well established in the field, but recent work has investigated vision only approaches. This paper presents a method for generating approximate rotational and translation velocity information from a single vehicle-mounted consumer camera, without the computationally expensive process of tracking landmarks. The method is tested by employing it to provide the odometric and visual information for the RatSLAM system while mapping a complex suburban road network. RatSLAM generates a coherent map of the environment during an 18 km long trip through suburban traffic at speeds of up to 60 km/hr. This result demonstrates the potential of ground based vision-only SLAM using low cost sensing and computational hardware.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conventional cameras have limited dynamic range, and as a result vision-based robots cannot effectively view an environment made up of both sunny outdoor areas and darker indoor areas. This paper presents an approach to extend the effective dynamic range of a camera, achieved by changing the exposure level of the camera in real-time to form a sequence of images which collectively cover a wide range of radiance. Individual control algorithms for each image have been developed to maximize the viewable area across the sequence. Spatial discrepancies between images, caused by the moving robot, are improved by a real-time image registration process. The sequence is then combined by merging color and contour information. By integrating these techniques it becomes possible to operate a vision-based robot in wide radiance range scenes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this column, Dr. Peter Corke of CSIRO, Australia, gives us a description of MATLAB Toolboxes he has developed. He has been passionately developing tools to enable students and teachers to better understand the theoretical concepts behind classical robotics and computer vision through easy and intuitive simulation and visualization. The results of this labor of love have been packaged as MATLAB Toolboxes: the Robotics Toolbox and the Vision Toolbox. –Daniela Rus, RAS Education Cochair

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a technique for high-dynamic range stereo for outdoor mobile robot applications. Stereo pairs are captured at a number of different exposures (exposure bracketing), and combined by projecting the 3D points into a common coordinate frame, and building a 3D occupancy map. We present experimental results for static scenes with constant and dynamic lighting as well as outdoor operation with variable and high contrast lighting conditions.