222 resultados para Virtual Museuns
Resumo:
It can be argued that technological advances and increasing familiarity with technology in the general population has created a huge potential for expansion of online learning (OL) across the educational spectrum. The growth of OL at the university level over the last few years has brought with it an increasing need to understand the learning processes and social processes involved in the ‘cyber’ or ‘virtual’ lecture hall and seminar room by asking questions such as: What are ‘virtual universities’? How – or more critically whether – virtual learning environments are different from face-to-face (F2F) ones? In other words, there is a critical need to explore how students relate to each other and their lecturer(s) in a literal ‘school without walls’? This paper explores the development of a virtual community within a wholly online MA in Applied Linguistics program within the framework of online community development proposed by Haythornthwaite et al (2000).
Resumo:
This paper compares the performances of two different optimisation techniques for solving inverse problems; the first one deals with the Hierarchical Asynchronous Parallel Evolutionary Algorithms software (HAPEA) and the second is implemented with a game strategy named Nash-EA. The HAPEA software is based on a hierarchical topology and asynchronous parallel computation. The Nash-EA methodology is introduced as a distributed virtual game and consists of splitting the wing design variables - aerofoil sections - supervised by players optimising their own strategy. The HAPEA and Nash-EA software methodologies are applied to a single objective aerodynamic ONERA M6 wing reconstruction. Numerical results from the two approaches are compared in terms of the quality of model and computational expense and demonstrate the superiority of the distributed Nash-EA methodology in a parallel environment for a similar design quality.
Resumo:
Purpose –The introduction of Building Information Model tools over the last 20 years is resulting in radical changes in the Architectural, Engineering and Construction industry. One of these changes concerns the use of Virtual Prototyping - an advanced technology integrating BIM with realistic graphical simulations. Construction Virtual Prototyping (CVP) has now been developed and implemented on ten real construction projects in Hong Kong in the past three years. This paper reports on a survey aimed at establishing the effects of adopting this new technology and obtaining recommendations for future development. Design/methodology/approach – A questionnaire survey was conducted in 2007 of 28 key participants involved in four major Hong Kong construction projects – these projects being chosen because the CVP approach was used in more than one stage in each project. In addition, several interviews were conducted with the project manager, planning manager and project engineer of an individual project. Findings –All the respondents and interviewees gave a positive response to the CVP approach, with the most useful software functions considered to be those relating to visualisation and communication. The CVP approach was thought to improve the collaboration efficiency of the main contractor and sub-contractors by approximately 30 percent, and with a concomitant 30 to 50 percent reduction in meeting time. The most important benefits of CPV in the construction planning stage are the improved accuracy of process planning and shorter planning times, while improved fieldwork instruction and reducing rework occur in the construction implementation stage. Although project teams are hesitant to attribute the use of CVP directly to any specific time savings, it was also acknowledged that the workload of project planners is decreased. Suggestions for further development of the approach include incorporation of automatic scheduling and advanced assembly study. Originality/value –Whilst the research, development and implementation of CVP is relatively new in the construction industry, it is clear from the applications and feedback to date that the approach provides considerable added value to the organisation and management of construction projects.
Resumo:
The inherent uncertainty and complexity of construction work make construction planning a particularly difficult task for project managers due to the need to anticipate and visualize likely future events. Conventional computer-assisted technology can help but is often limited to the constructability issues involved. Virtual prototyping, however, offers an improved method through the visualization of construction activities by computer simulation — enabling a range of ‘what-if’ questions to be asked and their implications on the total project to be investigated. This paper describes the use of virtual prototyping to optimize construction planning schedules by analyzing resource allocation and planning with integrated construction models, resource models, construction planning schedules and site-layout plans. A real-life case study is presented that demonstrates the use of a virtual prototyping enabled resource analysis to reallocate space, logistic on access road and arrange tower cranes to achieve a 6-day floor construction cycle.
Resumo:
Traditionally, conceptual modelling of business processes involves the use of visual grammars for the representation of, amongst other things, activities, choices and events. These grammars, while very useful for experts, are difficult to understand by naive stakeholders. Annotations of such process models have been developed to assist in understanding aspects of these grammars via map-based approaches, and further work has looked at forms of 3D conceptual models. However, no one has sought to embed the conceptual models into a fully featured 3D world, using the spatial annotations to explicate the underlying model clearly. In this paper, we present an approach to conceptual process model visualisation that enhances a 3D virtual world with annotations representing process constructs, facilitating insight into the developed model. We then present a prototype implementation of a 3D Virtual BPMN Editor that embeds BPMN process models into a 3D world. We show how this gives extra support for tasks performed by the conceptual modeller, providing better process model communication to stakeholders..
Resumo:
As virtual communities become more central to the everyday activities of connected individuals, we face increasingly pressing questions about the proper allocation of power, rights and responsibilities. This paper argues that our current legal discourse is ill-equipped to provide answers that will safeguard the legitimate interests of participants and simultaneously refrain from limiting the future innovative development of these spaces. From social networking sites like Facebook to virtual worlds like World of Warcraft and Second Life, participants who are banned from these communities stand to lose their virtual property, their connections to their friends and family, and their personal expression. Because our legal system views the proprietor’s interests as absolute private property rights, however, participants who are arbitrarily, capriciously or maliciously ejected have little recourse under law. This paper argues that, rather than assuming that a private property and freedom of contract model will provide the most desirable outcomes, a more critical approach is warranted. By rejecting the false dichotomy between ‘public’ and ‘private’ spaces, and recognising some of the absolutist and necessitarian trends in the current property debate, we may be able to craft legal rules that respect the social bonds between participants while simultaneously protecting the interests of developers.
Resumo:
This paper explores an innovative model for work-integrated learning using a virtual paradigm – The Virtual Law Placement Unit at Queensland University of Technology (QUT) Australia. It builds upon the conceptual model previously explored at WACE 2007 and provides an account of the lessons learned from the pilot offering of the unit which was conducted and evaluated in 2008. ----- The Virtual Placement Unit offers students the opportunity to complete an authentic workplace task under the guidance of a real-life workplace supervisor, where student-student communication and student-supervisor communication is all conducted virtually (and potentially asynchronously) to create an engaging but flexible learning environment using a combination of Blackboard and SharePoint technologies. This virtual experience is pioneering in the sense that it enables law students to access an unprecedented range of law graduate destination workplaces and projects, including international and social justice placements, absent the constraints traditionally associated with arranging physical placements. ----- All aspects of this unit have been designed in conjunction with community partners with a view to balancing student learning objectives with community needs through co-operative education. This paper will also explore how the implementation of the project is serving to strengthen those partnerships with the wider community, simultaneously addressing the community engagement agenda of the University and enabling students to engage meaningfully with local, national and international community partners in the real world of work.
Resumo:
The portability and runtime safety of programs which are executed on the Java Virtual Machine (JVM) makes the JVM an attractive target for compilers of languages other than Java. Unfortunately, the JVM was designed with language Java in mind, and lacks many of the primitives required for a straighforward implementation of other languages. Here, we discuss how the JVM may be used to implement other object-oriented languages. As a practical example of the possibilities, we report on a comprehensive case study. The open source Gardens Point Component Pascal compiler compiles the entire Component Pascal language, a dialect of Oberon-2, to JVM bytecodes. This compiler achieves runtime efficiencies which are comparable to native-code implementations of procedural languages.
Resumo:
The portability and runtime safety of programs which are executed on the Java Virtual Machine (JVM) makes the JVM an attractive target for compilers of languages other than Java. Unfortunately, the JVM was designed with language Java in mind, and lacks many of the primitives required for a straight forward implementation of other languages. Here, we discuss how the JVM may be used to implement other object oriented languages. As a practical example of the possibilities, we report on a comprehensive case study. The open source Gardens Point Component Pascal compiler compiles the entire Component Pascal language, a dialect of Oberon 2, to JVM bytecodes. This compiler achieves runtime efficiencies which are comparable to native code implementations of procedural languages.
Resumo:
While a range of benefits to students participating in mooting have been identified by the legal education literature, there are impediments to students participating in mooting that have been revealed by recent surveys of law students at QUT. These impediments include time, geographical location and a failure to perceive the benefits of mooting. This paper will explore the benefits of using technology to overcome these impediments, evaluate technological options to facilitate distance mooting, such as the use of Second Life, Elluminate and video conferencing, and will recommend a trial of these options.
Resumo:
In children, the pain and anxiety associated with acute burn dressing changes can be severe, with drug treatment alone frequently proving to be inadequate. Virtual reality (VR) systems have been successfully trialled in limited numbers of adult and paediatric burn patients. Augmented reality (AR) differs from VR in that it overlays virtual images onto the physical world, instead of creating a complete virtual world. This prospective randomised controlled trial investigated the use of AR as an adjunct to analgesia and sedation in children with acute burns. Forty-two children (30 male and 12 female), with an age range of 3–14 years (median age 9 years) and a total burn surface area ranging from 1 to 16% were randomised into a treatment (AR) arm and a control (basic cognitive therapy) arm after administration of analgesia and/or sedation. Pain scores, pulse rates (PR), respiratory rates (RR) and oxygen saturations (SaO2) were recorded pre-procedurally, at 10 min intervals and post-procedurally. Parents were also asked to grade their child's overall pain score for the dressing change. Mean pain scores were significantly lower (p = 0.0060) in the AR group compared to the control group, as were parental pain assessment scores (p = 0.015). Respiratory and pulse rates showed significant changes over time within groups, however, these were not significantly different between the two study groups. Oxygen saturation did not differ significantly over time or between the two study groups. This trial shows that augmented reality is a useful adjunct to pharmacological analgesia.
Resumo:
Games and related virtual environments have been a much-hyped area of the entertainment industry. The classic quote is that games are now approaching the size of Hollywood box office sales [1]. Books are now appearing that talk up the influence of games on business [2], and it is one of the key drivers of present hardware development. Some of this 3D technology is now embedded right down at the operating system level via the Windows Presentation Foundations – hit Windows/Tab on your Vista box to find out... In addition to this continued growth in the area of games, there are a number of factors that impact its development in the business community. Firstly, the average age of gamers is approaching the mid thirties. Therefore, a number of people who are in management positions in large enterprises are experienced in using 3D entertainment environments. Secondly, due to the pressure of demand for more computational power in both CPU and Graphical Processing Units (GPUs), your average desktop, any decent laptop, can run a game or virtual environment. In fact, the demonstrations at the end of this paper were developed at the Queensland University of Technology (QUT) on a standard Software Operating Environment, with an Intel Dual Core CPU and basic Intel graphics option. What this means is that the potential exists for the easy uptake of such technology due to 1. a broad range of workers being regularly exposed to 3D virtual environment software via games; 2. present desktop computing power now strong enough to potentially roll out a virtual environment solution across an entire enterprise. We believe such visual simulation environments can have a great impact in the area of business process modeling. Accordingly, in this article we will outline the communication capabilities of such environments, giving fantastic possibilities for business process modeling applications, where enterprises need to create, manage, and improve their business processes, and then communicate their processes to stakeholders, both process and non-process cognizant. The article then concludes with a demonstration of the work we are doing in this area at QUT.