404 resultados para Static voltage stability margin


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A virtual power system can be interfaced with a physical system to form a power hardware-in-the-loop (PHIL) simulation. In this scheme, the virtual system can be simulated in a fast parallel processor to provide near real-time outputs, which then can be interfaced to a physical hardware that is called the hardware under test (HuT). Stable operation of the entire system, while maintaining acceptable accuracy, is the main challenge of a PHIL simulation. In this paper, after an extended stability analysis for voltage and current type interfaces, some guidelines are provided to have a stable PHIL simulation. The presented analysis have been evaluated by performing several experimental tests using a Real Time Digital Simulator (RTDS™) and a voltage source converter (VSC). The practical test results are consistent with the proposed analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This project develops the required guidelines to assure stable and accurate operation of Power-Hardware-in-the-Loop implementations. The proposals of this research have been theoretically analyzed and practically examined using a Real-Time Digital Simulator. In this research, the interaction between software simulated power network and the physical power system has been studied. The conditions for different operating regimes have been derived and the corresponding analyses have been presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This project is a step forward in developing effective methods to mitigate voltage unbalance in urban residential networks. The method is proposed to reduce energy losses and improve quality of service in strongly unbalanced low-voltage networks. The method is based on phase swapping as well as optimal placement and sizing of Distribution Static Synchronous Compensator (D-STATCOM) using a Particle Swarm Optimisation method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This project was a step forward in improving the voltage profile of traditional low voltage distribution networks with high photovoltaic generation or high peak demand. As a practical and economical solution, the developed methods use a Dynamic Voltage Restorer or DVR, which is a series voltage compensator, for continuous and communication-less power quality enhancement. The placement of DVR in the network is optimised in order to minimise its power rating and cost. In addition, new approaches were developed for grid synchronisation and control of DVR which are integrated with the voltage quality improvement algorithm for stable operation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aurizon, Australia's largest rail freight operator, is introducing the Static Frequency Converter (SFC) technology into its electric railway network as part of the Bauhinia Electrification Project. The introduction of SFCs has significant implications on the protection systems of the 50kV traction network. The traditional distance protection calculation method does not work in this configuration because of the effect that the SFC in combination with the remote grid has on the apparent impedance, and was substantially reviewed. The standard overcurrent (OC) protection scheme is not suitable due to the minimum fault level being below the maximum load level and was revised to incorporate directionality and under-voltage inhibit. Delta protection was reviewed to improve sensitivity. A new protection function was introduced to prevent back-feeding faults in the transmission network through the grid connection. Protection inter-tripping was included to ensure selectivity between the SFC protection and the system downstream.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Controlling the morphological structure of titanium dioxide (TiO 2) is crucial for obtaining superior power conversion efficiency for dye-sensitized solar cells. Although the sol-gel-based process has been developed for this purpose, there has been limited success in resisting the aggregation of nanostructured TiO2, which could act as an obstacle for mass production. Herein, we report a simple approach to improve the efficiency of dye-sensitized solar cells (DSSC) by controlling the degree of aggregation and particle surface charge through zeta potential analysis. We found that different aqueous colloidal conditions, i.e., potential of hydrogen (pH), water/titanium alkoxide (titanium isopropoxide) ratio, and surface charge, obviously led to different particle sizes in the range of 10-500 nm. We have also shown that particles prepared under acidic conditions are more effective for DSSC application regarding the modification of surface charges to improve dye loading and electron injection rate properties. Power conversion efficiency of 6.54%, open-circuit voltage of 0.73 V, short-circuit current density of 15.32 mA/cm2, and fill factor of 0.73 were obtained using anatase TiO 2 optimized to 10-20 nm in size, as well as by the use of a compact TiO2 blocking layer.