229 resultados para Standardization in robotics
Resumo:
This paper presents the Smarty Board; a new micro-controller board designed specifically for the robotics teaching needs of Australian schools. The primary motivation for this work was the lack of commercially available and cheap controller boards that would have all their components including interfaces on a single board. Having a single board simplifies the construction of programmable robots that can be used as platforms for teaching and learning robotics. Reducing the cost of the board as much as possible was one of the main design objectives. The target user groups for this device are the secondary and tertiary students, and hobbyists. Previous studies have shown that equipment cost is one of the major obstacles for teaching robotics in Australia. The new controller board was demonstrated at high-school seminars. In these demonstrations the new controller board was used for controlling two robots that we built. These robots are available as kits. Given the strong demand from high-school teachers, new kits will be developed for the next robotic Olympiad to be held in Australia in 2006.
Resumo:
Both traditional and progressive curricula are inadequate for the task of responding to the economic, political, social, and cultural changes that have occurred as a result of globalization. This book documents some of the ongoing work occurring in early childhood settings that is aimed at improving, and ultimately transforming, early childhood practice in these changed and changing times. The authors do not simply critique developmental approaches or the increasing standardization of the field. Instead, they describe how they are playing around with postmodern ideas in practice and developing unique approaches to the diverse educational circumstances that confront early childhood educators. Whether it is preparing teachers, using materials, or developing policies, each chapter provides readers with possibilities for enacting pedagogies that are responsive to the contemporary circumstances shaping the lives of young children.
Resumo:
Image-based visual servo (IBVS) is a simple, efficient and robust technique for vision-based control. Although technically a local method in practice it demonstrates almost global convergence. However IBVS performs very poorly for cases that involve large rotations about the optical axis. It is well known that re-parameterizing the problem by using polar, instead of Cartesian coordinates, of feature points overcomes this limitation. First, simulation and experimental results are presented to show the complementarity of these two parameter-izations. We then describe a new hybrid visual servo strategy based on combining polar and Cartesian image Jacobians. © 2009 IEEE.
Resumo:
This paper presents an overview of our demonstration of a low-bandwidth, wireless camera network where image compression is undertaken at each node. We briefly introduce the Fleck hardware platform we have developed as well as describe the image compression algorithm which runs on individual nodes. The demo will show real-time image data coming back to base as individual camera nodes are added to the network. Copyright 2007 ACM.
Resumo:
This paper is concerned with choosing image features for image based visual servo control and how this choice influences the closed-loop dynamics of the system. In prior work, image features tend to be chosen on the basis of image processing simplicity and noise sensitivity. In this paper we show that the choice of feature directly influences the closed-loop dynamics in task-space. We focus on the depth axis control of a visual servo system and compare analytically various approaches that have been reported recently in the literature. The theoretical predictions are verified by experiment.
Resumo:
This paper considers the question of designing a fully image based visual servo control for a dynamic system. The work is motivated by the ongoing development of image based visual servo control of small aerial robotic vehicles. The observed targets considered are coloured blobs on a flat surface to which the normal direction is known. The theoretical framework is directly applicable to the case of markings on a horizontal floor or landing field. The image features used are a first order spherical moment for position and an image flow measurement for velocity. A fully non-linear adaptive control design is provided that ensures global stability of the closed-loop system. © 2005 IEEE.
Resumo:
This paper illustrates the prediction of opponent behaviour in a competitive, highly dynamic, multi-agent and partially observable environment, namely RoboCup small size league robot soccer. The performance is illustrated in the context of the highly successful robot soccer team, the RoboRoos. The project is broken into three tasks; classification of behaviours, modelling and prediction of behaviours and integration of the predictions into the existing planning system. A probabilistic approach is taken to dealing with the uncertainty in the observations and with representing the uncertainty in the prediction of the behaviours. Results are shown for a classification system using a Naïve Bayesian Network that determines the opponent’s current behaviour. These results are compared to an expert designed fuzzy behaviour classification system. The paper illustrates how the modelling system will use the information from behaviour classification to produce probability distributions that model the manner with which the opponents perform their behaviours. These probability distributions are show to match well with the existing multi-agent planning system (MAPS) that forms the core of the RoboRoos system.
Resumo:
DMAPS (Distributed Multi-Agent Planning System) is a planning system developed for distributed multi-robot teams based on MAPS (Multi-Agent Planning System). MAPS assumes that each agent has the same global view of the environment in order to determine the most suitable actions. This assumption fails when perception is local to the agents: each agent has only a partial and unique view of the environment. DMAPS addresses this problem by creating a probabilistic global view on each agent by fusing the perceptual information from each robot. The experimental results on consuming tasks show that while the probabilistic global view is not identical on each robot, the shared view is still effective in increasing performance of the team.
Resumo:
This paper shows initial results in deploying the biologically inspired Simultaneous Localisation and Mapping system, RatSLAM, in an outdoor environment. RatSLAM has been widely tested in indoor environments on the task of producing topologically coherent maps based on a fusion of odometric and visual information. This paper details the changes required to deploy RatSLAM on a small tractor equipped with odometry and an omnidirectional camera. The principal changes relate to the vision system, with others required for RatSLAM to use omnidirectional visual data. The initial results from mapping around a 500 m loop are promising, with many improvements still to be made.
Resumo:
This paper presents the implementation of a modified particle filter for vision-based simultaneous localization and mapping of an autonomous robot in a structured indoor environment. Through this method, artificial landmarks such as multi-coloured cylinders can be tracked with a camera mounted on the robot, and the position of the robot can be estimated at the same time. Experimental results in simulation and in real environments show that this approach has advantages over the extended Kalman filter with ambiguous data association and various levels of odometric noise.
Resumo:
This paper presents a vision-based method of vehicle localisation that has been developed and tested on a large forklift type robotic vehicle which operates in a mainly outdoor industrial setting. The localiser uses a sparse 3D edgemap of the environment and a particle filter to estimate the pose of the vehicle. The vehicle operates in dynamic and non-uniform outdoor lighting conditions, an issue that is addressed by using knowledge of the scene to intelligently adjust the camera exposure and hence improve the quality of the information in the image. Results from the industrial vehicle are shown and compared to another laser-based localiser which acts as a ground truth. An improved likelihood metric, using peredge calculation, is presented and has shown to be 40% more accurate in estimating rotation. Visual localization results from the vehicle driving an arbitrary 1.5km path during a bright sunny period show an average position error of 0.44m and rotation error of 0.62deg.