275 resultados para Radiation Protection
Resumo:
Exposure of the skin to sunlight can cause skin cancer and is also necessary for cutaneous vitamin D production. Media reports have highlighted the purported health benefits of vitamin D. Our aim was to examine attitudes and behaviours related to sun protection and vitamin D. A cross-sectional study of 2,001 residents in Queensland, Australia aged 20-70 years was undertaken. Information collected included: skin cancer risk factors; perceptions about levels of sun exposure required to maintain vitamin D; belief that sun protection increases risk of vitamin D deficiency; intention, and actual change in sun protection practices for adults and children. Multivariate models examined predictors of attitudinal and behavioural change. One-third (32%) believed a fair-skinned adult, and 31% thought a child required at least 30 minutes per day in summer sun to maintain vitamin D levels. Reductions in sun protection were reported by 21% of adults and 14% of children. Factors associated with belief that sun protection may result in not obtaining enough vitamin D included aged ≥ 60 years (OR=1.35, 95% CI 1.09-1.66) and having skin that tanned easily (OR=1.96, 95% CI 1.38-2.78). Participants from low income households, and those who frequently used sun protective clothing were more likely to have reduced sun protection practices (OR=1.33, 95% CI 1.10-1.73 and OR=1.73, 95% CI 1.36-2.20, respectively). This study provides evidence of reductions in sun protection practices in a population living in a high UV environment. There is an urgent need to re-focus messages regarding sun exposure and for continued sun protection practices.
Resumo:
Protection of “critical infrastructure” has become a major issue for govern- ments worldwide. Yet in Australia, as in many other countries, including the United States, an estimated 90% of critical infrastructure is privately owned or operated commercially – in other words, critical infrastructure protection is not the exclusive domain of government. As a result, information sharing between government and the private sector has become a vitally important component of effective risk management. However, establishing effective arrangements of this kind between the public and private sector needs to take account of existing regimes of access and public disclosure which relate to government-held documents; in particular, that which is established by freedom of information (FOI) legislation. This article examines the extent to which the current Commonwealth FOI regime is likely to act as an impediment to the private sector operators of critical infrastructure participat- ing in government-operated information sharing arrangements. By examining developments in other jurisdictions, principally the United States, the article considers whether amendments to the current Australian FOI regime are necessary to ensure effective participation, consistent with the underlying object and purpose of FOI.
Resumo:
"Know How" protection varies enormously from country to country and is a complex equation of legal, political, cultural and economic factors. A contrast between Japan and Australia serves to highlight some of these factors. For the purposes of this article, a working definition of "know how" is required. In Australia and other common law systems, no statutory definition of "know how" exists, "confidential information" proving the closest comparative term in Australia ('trade secret law' in the United States).
Resumo:
Section 35 of the Insurance Contracts Act 1984 requires insurers offering insurance policies in six prescribed areas "to clearly inform" prospective insureds of any departure their policies may constitute from the standard covers established by the Act and its accompanying Regulations. This prescribed insurance contracts regime was designed to remedy comprehension problems generated by the length and complexity of insurance documents and to alleviate misunderstanding over the terms and conditions of individual policies. This article examines the rationale underpinning s 35 and the prescribed insurance contracts regime and looks at the operation of the legislation with particular reference to home contents insurance in Australia. It is argued that the means whereby disclosure of derogation from standard cover may be effected largely negates the thrust of the prescribed insurance contract reform. Recommendations to address these operational deficiencies are made.
Resumo:
Ultraviolet radiation (UV) is the carcinogen that causes the most common malignancy in humans – skin cancer. However, moderate UV exposure is essential for producing vitaminDin our skin. VitaminDincreases the absorption of calcium from the diet, and adequate calcium is necessary for the building and maintenance of bones. Thus, low levels of vitamin D can cause osteomalacia and rickets and contribute to osteoporosis. Emerging evidence also suggests vitamin D may protect against falls, internal cancers, psychiatric conditions, autoimmune diseases and cardiovascular diseases. Since the dominant source of vitamin D is sunlight exposure, there is a need to understand what is a “balanced” level of sun exposure to maintain an adequate level of vitamin D but minimise the risks of eye damage, skin damage and skin cancer resulting from excessive UV exposure. There are many steps in the pathway from incoming solar UV to the eventual vitamin D status of humans (measured as 25-hydroxyvitamin D in the blood), and our knowledge about many of these steps is currently incomplete. This project begins by investigating the levels of UV available for synthesising vitamin D, and how these levels vary across seasons, latitudes and times of the day. The thesis then covers experiments conducted with an in vitro model, which was developed to study several aspects of vitamin D synthesis. Results from the model suggest the relationship between UV dose and vitamin D is not linear. This is an important input into public health messages regarding ‘safe’ UV exposure: larger doses of UV, beyond a certain limit, may not continue to produce vitamin D; however, they will increase the risk of skin cancers and eye damage. The model also showed that, when given identical doses of UV, the amount of vitamin D produced was impacted by temperature. In humans, a temperature-dependent reaction must occur in the top layers of human skin, prior to vitamin D entering the bloodstream. The hypothesis will be raised that cooler temperatures (occurring in winter and at high latitudes) may reduce vitamin D production in humans. Finally, the model has also been used to study the wavelengths of UV thought to be responsible for producing vitamin D. It appears that vitamin D production is limited to a small range of UV wavelengths, which may be narrower than previously thought. Together, these results suggest that further research is needed into the ability of humans to synthesise vitamin D from sunlight. In particular, more information is needed about the dose-response relationship in humans and to investigate the proposed impact of temperature. Having an accurate action spectrum will also be essential for measuring the available levels of vitamin D-effective UV. As this research continues, it will contribute to the scientific evidence-base needed for devising a public health message that will balance the risks of excessive UV exposure with maintaining adequate vitamin D.
Resumo:
To assess the effects of any interventions which aim to prevent or manage radiation-induced skin reactions in people with cancer.
Resumo:
Our understanding of how the environment can impact human health has evolved and expanded over the centuries, with concern and interest dating back to ancient times. For example, over 4000 years ago, a civilisation in northern India tried to protect the health of its citizens by constructing and positioning buildings according to strict building laws, by having bathrooms and drains, and by having paved streets with a sewerage system (Rosen 1993). In more recent times, the ‘industrial revolution’ played a dominant role in shaping the modern world, and with it the modern public health system. This era was signified by rapid progress in technology, the growth of transportation and the expansion of the market economy, which lead to the organisation of industry into a factory system. This meant that labour had to be brought to the factories and by the 1820s, poverty and social distress (including overcrowding and infrequent sewage and garbage disposal) was more widespread than ever. These circumstances, therefore, lead to the rise of the ‘sanitary revolution’ and the birth of modern public health (Rosen 1993). The sanitary revolution has also been described as constituting the beginning of the first wave of environmental concern, which continued until after World War 2 when major advances in engineering and chemistry substantially changed the face of industry, particularly the chemical sector. The second wave of environmental concern came in the mid to late 20th century and was dominated by the environmental or ecology movement. A landmark in this era was the 1962 publication of the book Silent Spring by Rachel Carson. This identified for the first time the dramatic effects on the ecosystem of the widespread use of the organochlorine pesticide, DDT. The third wave of environmental concern commenced in the 1980s and continues today. The accelerated rate of economic development, the substantial increase in the world population and the globalisation of trade have dramatically changed the production methods and demand for goods in both developed and developing countries. This has lead to the rise of ‘sustainable development’ as a key driver in environmental planning and economic development (Yassi et al 2001). The protection of health has, therefore, been a hallmark of human history and is the cornerstone of public health practice. This chapter introduces environmental health and how it is managed in Australia, including a discussion of the key generic management tools. A number of significant environmental health issues and how they are specifically managed are then discussed, and the chapter concludes by discussing sustainable development and its links with environmental health.
Resumo:
Over recent years, there has been a shift in government social policy in Australia toward interest and investment in family support, prevention and early intervention. Central to this new approach to supporting families and promoting better outcomes for children is the development of a continuum of services able to respond to different and changing family needs. This continuum or integrated service system seeks to better connect key human services, such as health, child care, education and family support. This paper explores the role of early childhood education and care (ECEC) services in promoting child protection and strengthening the safety and wellbeing of children.
Resumo:
Films of piezoelectric PVDF and P(VDF-TrFE) were exposed to vacuum UV (115-300 nm VUV) and -radiation to investigate how these two forms of radiation affect the chemical, morphological, and piezoelectric properties of the polymers. The extent of crosslinking was almost identical in both polymers after -irradiation, but surprisingly, was significantly higher for the TrFE copolymer after VUV-irradiation. Changes in the melting behavior were also more significant in the TrFE copolymer after VUV-irradiation due to both surface and bulk crosslinking, compared with only surface crosslinking for the PVDF films. The piezoelectric properties (measured using d33 piezoelectric coefficients and D-E hysteresis loops) were unchanged in the PVDF homopolymer, while the TrFE copolymer exhibited more narrow D-E loops after exposure to either - or VUV-radiation. The more severe damage to the TrFE copolymer in comparison with the PVDF homopolymer after VUV-irradiation is explained by different energy deposition characteristics. The short wavelength, highly energetic photons are undoubtedly absorbed in the surface layers of both polymers, and we propose that while the longer wavelength components of the VUV-radiation are absorbed by the bulk of the TrFE copolymer causing crosslinking, they are transmitted harmlessly in the PVDF homopolymer.
Resumo:
Poly(vinylidene fluoride) and copolymers of vinylidene fluoride with hexafluoropropylene, trifluoroethylene and chlorotrifluoroethylene have been exposed to gamma irradiation in vacuum, up to doses of 1MGy under identical conditions, to obtain a ranking of radiation sensitivities. Changes in the tensile properties, crystalline melting points,heats of fusion, gel contents and solvent uptake factors were used as the defining parameters. The initial degree of crystallinity and film processing had the greatest influence on relative radiation damage, although the cross-linked network features were almost identical in their solvent swelling characteristics, regardless of the comonomer composition or content.
Resumo:
The radiation chemistry and the grafting of a fluoropolymer, poly(tetrafluoroethylene-coperfluoropropyl vinyl ether) (PFA), was investigated with the aim of developing a highly stable grafted support for use in solid phase organic chemistry (SPOC). A radiation-induced grafting method was used whereby the PFA was exposed to ionizing radiation to form free radicals capable of initiating graft copolymerization of styrene. To fully investigate this process, both the radiation chemistry of PFA and the grafting of styrene to PFA were examined. Radiation alone was found to have a detrimental effect on PFA when irradiated at 303 K. This was evident from the loss in the mechanical properties due to chain scission reactions. This meant that when radiation was used for the grafting reactions, the total radiation dose needed to be kept as low as possible. The radicals produced when PFA was exposed to radiation were examined using electron spin resonance spectroscopy. Both main-chain (–CF2–C.F–CF2-) and end-chain (–CF2–C.F2) radicals were identified. The stability of the majority of the main-chain radicals when the polymer was heated above the glass transition temperature suggested that they were present mainly in the crystalline regions of the polymer, while the end-chain radicals were predominately located in the amorphous regions. The radical yield at 77 K was lower than the radical yield at 303 K suggesting that cage recombination at low temperatures inhibited free radicals from stabilizing. High-speed MAS 19F NMR was used to identify the non-volatile products after irradiation of PFA over a wide temperature range. The major products observed over the irradiation temperature 303 to 633 K included new saturated chain ends, short fluoromethyl side chains in both the amorphous and crystalline regions, and long branch points. The proportion of the radiolytic products shifted from mainly chain scission products at low irradiation temperatures to extensive branching at higher irradiation temperatures. Calculations of G values revealed that net crosslinking only occurred when PFA was irradiated in the melt. Minor products after irradiation at elevated temperatures included internal and terminal double bonds and CF3 groups adjacent to double bonds. The volatile products after irradiation at 303 K included tetrafluoromethane (CF4) and oxygen-containing species from loss of the perfluoropropyl ether side chains of PFA as identified by mass spectrometry and FTIR spectroscopy. The chemical changes induced by radiation exposure were accompanied by changes in the thermal properties of the polymer. Changes in the crystallinity and thermal stability of PFA after irradiation were examined using DSC and TGA techniques. The equilibrium melting temperature of untreated PFA was 599 K as determined using a method of extrapolation of the melting temperatures of imperfectly formed crystals. After low temperature irradiation, radiation- induced crystallization was prevalent due to scission of strained tie molecules, loss of perfluoropropyl ether side chains, and lowering of the molecular weight which promoted chain alignment and hence higher crystallinity. After irradiation at high temperatures, the presence of short and long branches hindered crystallization, lowering the overall crystallinity. The thermal stability of the PFA decreased with increasing radiation dose and temperature due to the introduction of defect groups. Styrene was graft copolymerized to PFA using -radiation as the initiation source with the aim of preparing a graft copolymer suitable as a support for SPOC. Various grafting conditions were studied, such as the total dose, dose rate, solvent effects and addition of nitroxides to create “living” graft chains. The effect of dose rate was examined when grafting styrene vapour to PFA using the simultaneous grafting method. The initial rate of grafting was found to be independent of the dose rate which implied that the reaction was diffusion controlled. When the styrene was dissolved in various solvents for the grafting reaction, the graft yield was strongly dependent of the type and concentration of the solvent used. The greatest graft yield was observed when the solvent swelled the grafted layers and the substrate. Microprobe Raman spectroscopy was used to map the penetration of the graft into the substrate. The grafted layer was found to contain both poly(styrene) (PS) and PFA and became thicker with increasing radiation dose and graft yield which showed that grafting began at the surface and progressively penetrated the substrate as the grafted layer was swollen. The molecular weight of the grafted PS was estimated by measuring the molecular weight of the non-covalently bonded homopolymer formed in the grafted layers using SEC. The molecular weight of the occluded homopolymer was an order of magnitude greater than the free homopolymer formed in the surrounding solution suggesting that the high viscosity in the grafted regions led to long PS grafts. When a nitroxide mediated free radical polymerization was used, grafting occurred within the substrate and not on the surface due to diffusion of styrene into the substrate at the high temperatures needed for the reaction to proceed. Loading tests were used to measure the capacity of the PS graft to be functionialized with aminomethyl groups then further derivatized. These loading tests showed that samples grafted in a solution of styrene and methanol had superior loading capacity over samples graft using other solvents due to the shallow penetration and hence better accessibility of the graft when methanol was used as a solvent.
Resumo:
Islanded operation, protection, reclosing and arc extinguishing are some of the challenging issues related to the connection of converter interfaced distributed generators (DGs) into a distribution network. The isolation of upstream faults in grid connected mode and fault detection in islanded mode using overcurrent devices are difficult. In the event of an arc fault, all DGs must be disconnected in order to extinguish the arc. Otherwise, they will continue to feed the fault, thus sustaining the arc. However, the system reliability can be increased by maximising the DG connectivity to the system: therefore, the system protection scheme must ensure that only the faulted segment is removed from the feeder. This is true even in the case of a radial feeder as the DG can be connected at various points along the feeder. In this paper, a new relay scheme is proposed which, along with a novel current control strategy for converter interfaced DGs, can isolate permanent and temporary arc faults. The proposed protection and control scheme can even coordinate with reclosers. The results are validated through PSCAD/EMTDC simulation and MATLAB calculations.