170 resultados para Nonlinear vehicle suspension system
Resumo:
This paper describes the current status of a program to develop an automated forced landing system for a fixed-wing Unmanned Aerial Vehicle (UAV). This automated system seeks to emulate human pilot thought processes when planning for and conducting an engine-off emergency landing. Firstly, a path planning algorithm that extends Dubins curves to 3D space is presented. This planning element is then combined with a nonlinear guidance and control logic, and simulated test results demonstrate the robustness of this approach to strong winds during a glided descent. The average path deviation errors incurred are comparable to or even better than that of manned, powered aircraft. Secondly, a study into suitable multi-criteria decision making approaches and the problems that confront the decision-maker is presented. From this study, it is believed that decision processes that utilize human expert knowledge and fuzzy logic reasoning are most suited to the problem at hand, and further investigations will be conducted to identify the particular technique/s to be implemented in simulations and field tests. The automated UAV forced landing approach presented in this paper is promising, and will allow the progression of this technology from the development and simulation stages through to a prototype system
Resumo:
The selection criteria for contractor pre-qualification are characterized by the co-existence of both quantitative and qualitative data. The qualitative data is non-linear, uncertain and imprecise. An ideal decision support system for contractor pre-qualification should have the ability of handling both quantitative and qualitative data, and of mapping the complicated nonlinear relationship of the selection criteria, such that rational and consistent decisions can be made. In this research paper, an artificial neural network model was developed to assist public clients identifying suitable contractors for tendering. The pre-qualification criteria (variables) were identified for the model. One hundred and twelve real pre-qualification cases were collected from civil engineering projects in Hong Kong, and eighty-eight hypothetical pre-qualification cases were also generated according to the “If-then” rules used by professionals in the pre-qualification process. The results of the analysis totally comply with current practice (public developers in Hong Kong). Each pre-qualification case consisted of input ratings for candidate contractors’ attributes and their corresponding pre-qualification decisions. The training of the neural network model was accomplished by using the developed program, in which a conjugate gradient descent algorithm was incorporated for improving the learning performance of the network. Cross-validation was applied to estimate the generalization errors based on the “re-sampling” of training pairs. The case studies show that the artificial neural network model is suitable for mapping the complicated nonlinear relationship between contractors’ attributes and their corresponding pre-qualification (disqualification) decisions. The artificial neural network model can be concluded as an ideal alternative for performing the contractor pre-qualification task.
Resumo:
This paper shows how the power quality can be improved in a microgrid that is supplying a nonlinear and unbalanced load. The microgrid contains a hybrid combination of inertial and converter interfaced distributed generation units where a decentralized power sharing algorithm is used to control its power management. One of the distributed generators in the microgrid is used as a power quality compensator for the unbalanced and harmonic load. The current reference generation for power quality improvement takes into account the active and reactive power to be supplied by the micro source which is connected to the compensator. Depending on the power requirement of the nonlinear load, the proposed control scheme can change modes of operation without any external communication interfaces. The compensator can operate in two modes depending on the entire power demand of the unbalanced nonlinear load. The proposed control scheme can even compensate system unbalance caused by the single-phase micro sources and load changes. The efficacy of the proposed power quality improvement control and method in such a microgrid is validated through extensive simulation studies using PSCAD/EMTDC software with detailed dynamic models of the micro sources and power electronic converters
Resumo:
Social and psychological theories have provided a plethora of evidence showing that the physical difficulty to express appropriate social interactions between drivers expresses itself in aggression, selfish driving and anti-social behaviour. Therefore there is a need to improve interactions between drivers and allow clearer collective decision making between them. Personal characteristics and the driving situations play strong roles in driver’s aggression. Our approach is centered around the driving situation as opposed to focusing on personality characteristics. It examines aggression and manipulates contextual variables such as driver’s eye contact exchanges. This paper presents a new unobtrusive in-vehicle system that aims at communicating drivers’ intentions, elicit social responses and increasing mutual awareness. It uses eye gaze as a social cue to affect collective decision making with the view to contribute to safe driving. The authors used a driving simulator to design a case control experiment in which eye gaze movements are conveyed with an avatar. Participants were asked to drive through different types of intersections. An avatar representing the head of the other driver was displayed and driver behaviour was analysed. Significant eye gaze pattern difference where observed when an avatar was displayed. Drivers cautiously refer to the avatar when information is required on the intention of others (e.g. when they do not have the right of way). The majority of participants reported the perception of “being looked at”. The number of glances and time spent gazing at the avatar did not indicate an unsafe distraction by standards of in-vehicle device ergonomic design. Avatars were visually consulted primarily in less demanding driving situations, which underlines their non-distractive nature.
Automation of an underground mining vehicle using reactive navigation and opportunistic localization
Resumo:
This paper describes the implementation of an autonomous navigation system onto a 30 tonne Load-Haul-Dump truck. The control architecture is based on a robust reactive wall-following behaviour. To make it purposeful we provide driving hints derived from an approximate nodal-map. For most of the time, the vehicle is driven with weak localization (odometry). This need only be improved at intersections where decisions must be made - a technique we refer to as opportunistic localization. The truck has achieved full-speed autonomous operation at an artificial test mine, and subsequently, at a operational underground mine.
Resumo:
We present algorithms, systems, and experimental results for underwater data muling. In data muling a mobile agent interacts with static agents to upload, download, or transport data to a different physical location. We consider a system comprising an Autonomous Underwater Vehicle (AUV) and many static Underwater Sensor Nodes (USN) networked together optically and acoustically. The AUV can locate the static nodes using vision and hover above the static nodes for data upload. We describe the hardware and software architecture of this underwater system, as well as experimental data. © 2006 IEEE.
Resumo:
The development of autonomous air vehicles can be an expensive research pursuit. To alleviate some of the financial burden of this process, we have constructed a system consisting of four winches each attached to a central pod (the simulated air vehicle) via cables - a cable-array robot. The system is capable of precisely controlling the three dimensional position of the pod allowing effective testing of sensing and control strategies before experimentation on a free-flying vehicle. In this paper, we present a brief overview of the system and provide a practical control strategy for such a system. ©2005 IEEE.
Resumo:
Machine vision represents a particularly attractive solution for sensing and detecting potential collision-course targets due to the relatively low cost, size, weight, and power requirements of vision sensors (as opposed to radar and TCAS). This paper describes the development and evaluation of a real-time vision-based collision detection system suitable for fixed-wing aerial robotics. Using two fixed-wing UAVs to recreate various collision-course scenarios, we were able to capture highly realistic vision (from an onboard camera perspective) of the moments leading up to a collision. This type of image data is extremely scarce and was invaluable in evaluating the detection performance of two candidate target detection approaches. Based on the collected data, our detection approaches were able to detect targets at distances ranging from 400m to about 900m. These distances (with some assumptions about closing speeds and aircraft trajectories) translate to an advanced warning of between 8-10 seconds ahead of impact, which approaches the 12.5 second response time recommended for human pilots. We overcame the challenge of achieving real-time computational speeds by exploiting the parallel processing architectures of graphics processing units found on commercially-off-the-shelf graphics devices. Our chosen GPU device suitable for integration onto UAV platforms can be expected to handle real-time processing of 1024 by 768 pixel image frames at a rate of approximately 30Hz. Flight trials using manned Cessna aircraft where all processing is performed onboard will be conducted in the near future, followed by further experiments with fully autonomous UAV platforms.
Resumo:
This paper describes a biologically inspired approach to vision-only simultaneous localization and mapping (SLAM) on ground-based platforms. The core SLAM system, dubbed RatSLAM, is based on computational models of the rodent hippocampus, and is coupled with a lightweight vision system that provides odometry and appearance information. RatSLAM builds a map in an online manner, driving loop closure and relocalization through sequences of familiar visual scenes. Visual ambiguity is managed by maintaining multiple competing vehicle pose estimates, while cumulative errors in odometry are corrected after loop closure by a map correction algorithm. We demonstrate the mapping performance of the system on a 66 km car journey through a complex suburban road network. Using only a web camera operating at 10 Hz, RatSLAM generates a coherent map of the entire environment at real-time speed, correctly closing more than 51 loops of up to 5 km in length.
Resumo:
The Simultaneous Localisation And Mapping (SLAM) problem is one of the major challenges in mobile robotics. Probabilistic techniques using high-end range finding devices are well established in the field, but recent work has investigated vision-only approaches. We present an alternative approach to the leading existing techniques, which extracts approximate rotational and translation velocity information from a vehicle-mounted consumer camera, without tracking landmarks. When coupled with an existing SLAM system, the vision module is able to map a 45 metre long indoor loop and a 1.6 km long outdoor road loop, without any parameter or system adjustment between tests. The work serves as a promising pilot study into ground-based vision-only SLAM, with minimal geometric interpretation of the environment.
Resumo:
This paper considers the question of designing a fully image-based visual servo control for a class of dynamic systems. The work is motivated by the ongoing development of image-based visual servo control of small aerial robotic vehicles. The kinematics and dynamics of a rigid-body dynamical system (such as a vehicle airframe) maneuvering over a flat target plane with observable features are expressed in terms of an unnormalized spherical centroid and an optic flow measurement. The image-plane dynamics with respect to force input are dependent on the height of the camera above the target plane. This dependence is compensated by introducing virtual height dynamics and adaptive estimation in the proposed control. A fully nonlinear adaptive control design is provided that ensures asymptotic stability of the closed-loop system for all feasible initial conditions. The choice of control gains is based on an analysis of the asymptotic dynamics of the system. Results from a realistic simulation are presented that demonstrate the performance of the closed-loop system. To the author's knowledge, this paper documents the first time that an image-based visual servo control has been proposed for a dynamic system using vision measurement for both position and velocity.
Resumo:
The development of autonomous air vehicles can be an expensive research pursuit. To alleviate some of the financial burden of this process, we have constructed a system consisting of four winches each attached to a central pod (the simulated air vehicle) via cables - a cable-array robot. The system is capable of precisely controlling the three dimensional position of the pod allowing effective testing of sensing and control strategies before experimentation on a free-flying vehicle. In this paper, we present a brief overview of the system and provide a practical control strategy for such a system.
Resumo:
In this paper, we outline the sensing system used for the visual pose control of our experimental car-like vehicle, the autonomous tractor. The sensing system consists of a magnetic compass, an omnidirectional camera and a low-resolution odometry system. In this work, information from these sensors is fused using complementary filters. Complementary filters provide a means of fusing information from sensors with different characteristics in order to produce a more reliable estimate of the desired variable. Here, the range and bearing of landmarks observed by the vision system are fused with odometry information and a vehicle model, providing a more reliable estimate of these states. We also present a method of combining a compass sensor with odometry and a vehicle model to improve the heading estimate.
Resumo:
In this paper we describe a low-cost flight control system for a small (60 class) helicopter which is part of a larger project to develop an autonomous flying vehicle. Our approach differs from that of others in not using an expensive inertial/GPS sensing system. The primary sensors for vehicle stabilization are a low-cost inertial sensor and a pair of CMOS cameras. We describe the architecture of our flight control system, the inertial and visual sensing subsystems and present some flight control results.