58 resultados para EMT
Resumo:
Epithelial to mesenchymal transition (EMT) is considered an important mechanism in tumor resistance to drug treatments; however, in vivo observation of this process has been limited. In this study we demonstrated an immediate and widespread EMT involving all surviving tumor cells following treatment of a mouse model of colorectal liver metastases with the vascular disruptive agent OXi4503. EMT was characterized by significant downregulation of E-cadherin, relocation and nuclear accumulation of b-catenin as well as significant upregulation of ZEB1 and vimentin. Concomitantly, significant temporal upregulation in hypoxia and the pro-angiogenic growth factors hypoxia-inducible factor 1-alpha, hepatocyte growth factor, vascular endothelial growth factor and transforming growth factor-beta were seen within the surviving tumor. The process of EMT was transient and by 5 days after treatment tumor cell reversion to epithelial morphology was evident. This reversal, termed mesenchymal to epithelial transition (MET) is a process implicated in the development of new metastases but has not been observed in vivo histologically. Similar EMT changes were observed in response to other antitumor treatments including chemotherapy, thermal ablation, and antiangiogenic treatments in our mouse colorectal metastasis model and in a murine orthotopic breast cancer model after OXi4503 treatment. These results suggest that EMT may be an early mechanism adopted by tumors in response to injury and hypoxic stress, such that inhibition of EMT in combination with other therapies could play a significant role in future cancer therapy.
Resumo:
BACKGROUND INFORMATION: Evidence has shown that mesenchymal-epithelial transition (MET) and epithelial-mesenchymal transition (EMT) are linked to stem cell properties. We currently lack a model showing how the occurrence of MET and EMT in immortalised cells influences the maintenance of stem cell properties. Thus, we established a project aiming to investigate the roles of EMT and MET in the acquisition of stem cell properties in immortalised oral epithelial cells. RESULTS: In this study, a retroviral transfection vector (pLXSN-hTERT) was used to immortalise oral epithelial cells by insertion of the hTERT gene (hTERT(+)-oral mucosal epithelial cell line [OME]). The protein and RNA expression of EMT transcriptional factors (Snail, Slug and Twist), their downstream markers (E-cadherin and N-cadherin) and embryonic stem cell markers (OCT4, Nanog and Sox2) were studied by reverse transcription PCR and Western blots in these cells. Some EMT markers were detected at both mRNA and protein levels. Adipocytes and bone cells were noted in the multi-differentiation assay, showing that the immortal cells underwent EMT. The differentiation assay for hTERT(+)-OME cells revealed the recovery of epithelial phenotypes, implicating the presence of MET. The stem cell properties were confirmed by the detection of appropriate markers. Altered expression of alpha-tubulin and gamma-tubulin in both two-dimensional-cultured (without serum) and three-dimensional-cultured hTERT(+)-OME spheroids indicated the re-programming of cytoskeleton proteins which is attributed to MET processes in hTERT(+)-OME cells. CONCLUSIONS: EMT and MET are essential for hTERT-immortalised cells to maintain their epithelial stem cell properties.
Resumo:
Approximately half of prostate cancers (PCa) carry TMPRSS2-ERG translocations; however, the clinical impact of this genomic alteration remains enigmatic. Expression of v-ets erythroblastosis virus E26 oncogene like (avian) gene (ERG) promotes prostatic epithelial dysplasia in transgenic mice and acquisition of epithelial-to-mesenchymal transition (EMT) characteristics in human prostatic epithelial cells (PrECs). To explore whether ERG-induced EMT in PrECs was associated with therapeutically targetable transformation characteristics, we established stable populations of BPH-1, PNT1B and RWPE-1 immortalized human PrEC lines that constitutively express flag-tagged ERG3 (fERG). All fERG-expressing populations exhibited characteristics of in vitro and in vivo transformation. Microarray analysis revealed >2000 commonly dysregulated genes in the fERG-PrEC lines. Functional analysis revealed evidence that fERG cells underwent EMT and acquired invasive characteristics. The fERG-induced EMT transcript signature was exemplified by suppressed expression of E-cadherin and keratins 5, 8, 14 and 18; elevated expression of N-cadherin, N-cadherin 2 and vimentin, and of the EMT transcriptional regulators Snail, Zeb1 and Zeb2, and lymphoid enhancer-binding factor-1 (LEF-1). In BPH-1 and RWPE-1-fERG cells, fERG expression is correlated with increased expression of integrin-linked kinase (ILK) and its downstream effectors Snail and LEF-1. Interfering RNA suppression of ERG decreased expression of ILK, Snail and LEF-1, whereas small interfering RNA suppression of ILK did not alter fERG expression. Interfering RNA suppression of ERG or ILK impaired fERG-PrEC Matrigel invasion. Treating fERG-BPH-1 cells with the small molecule ILK inhibitor, QLT-0267, resulted in dose-dependent suppression of Snail and LEF-1 expression, Matrigel invasion and reversion of anchorage-independent growth. These results suggest that ILK is a therapeutically targetable mediator of ERG-induced EMT and transformation in PCa.
Resumo:
Metastasis accounts for the poor prognosis of the majority of solid tumors. The phenotypic transition of nonmotile epithelial tumor cells to migratory and invasive “mesenchymal” cells (epithelial-to-mesenchymal transition [EMT]) enables the transit of cancer cells from the primary tumor to distant sites. There is no single marker of EMT; rather, multiple measures are required to define cell state. Thus, the multiparametric capability of high-content screening is ideally suited for the comprehensive analysis of EMT regulators. The aim of this study was to generate a platform to systematically identify functional modulators of tumor cell plasticity using the bladder cancer cell line TSU-Pr1-B1 as a model system. A platform enabling the quantification of key EMT characteristics, cell morphology and mesenchymal intermediate filament vimentin, was developed using the fluorescent whole-cell-tracking reagent CMFDA and a fluorescent promoter reporter construct, respectively. The functional effect of genome-wide modulation of protein-coding genes and miRNAs coupled with those of a collection of small-molecule kinase inhibitors on EMT was assessed using the Target Activation Bioapplication integrated in the Cellomics ArrayScan platform. Data from each of the three screens were integrated to identify a cohort of targets that were subsequently examined in a validation assay using siRNA duplexes. Identification of established regulators of EMT supports the utility of this screening approach and indicated capacity to identify novel regulators of this plasticity program. Pathway analysis coupled with interrogation of cancer-related expression profile databases and other EMT-related screens provided key evidence to prioritize further experimental investigation into the molecular regulators of EMT in cancer cells.
Resumo:
Epithelial to mesenchymal transition (EMT) has gained widespread acceptance over recent years as a mechanism by which normally sessile epithelial tumour cells can move away from the primary tumour and metastasize. This review article examines the role of a number of growth factors in inducing EMT, and the reverse process mesenchymal to epithelial transition. Unique and common intracellular signalling pathways are highlighted. A comprehensive understanding of the regulation of EMT will be critical in manipulating this process to develop novel anti-metastasis therapies.
Resumo:
Background Menstrual effluent affects mesothelial cell (MC) morphology. We evaluated whether these changes were consistent with epithelial-mesenchymal transitions (EMT). Methods Monolayer cultures of MC were incubated overnight in conditioned media, prepared from cells isolated form menstrual effluent, with or without kinase and ATP inhibitors. Changes in cell morphology were monitored using time-lapse video microscopy and immunohistochemistry. Effects on the expression of EMT-associated molecules were evaluated using real-time RT-PCR and/or Western blot analysis. Results Incubation in conditioned media disrupted cell-cell contacts, and increased MC motility. The changes were reversible. During the changes the distribution of cytokeratins, fibrillar actin and α-tubulin changed. Sodium azide, an inhibitor of ATP production, and Genistein, a general tyrosine kinase inhibitor, antagonized these effects. Wortmannin, a phosphatidylinositol 3-kinase inhibitor, and SU6656, an Src tyrosine kinase inhibitor, only partially antagonized the effect. The expression of Snail and vimentin was markedly up-regulated, whereas the expression of E-cadherin was decreased and cytokeratins were altered. Conclusions In MC, menstrual effluent initiates a reversible, energy-dependent transition process from an epithelial to a mesenchymal phenotype. Involvement of the (Src) tyrosine kinase signalling pathway and the changes in the expression of cytokeratins, Snail, vimentin and E-cadherin demonstrate that the morphological changes are EMT.
Resumo:
Androgens regulate biological pathways to promote proliferation, differentiation, and survival of benign and malignant prostate tissue. Androgen receptor (AR) targeted therapies exploit this dependence and are used in advanced prostate cancer to control disease progression. Contemporary treatment regimens involve sequential use of inhibitors of androgen synthesis or AR function. Although targeting the androgen axis has clear therapeutic benefit, its effectiveness is temporary, as prostate tumor cells adapt to survive and grow. The removal of androgens (androgen deprivation) has been shown to activate both epithelial-to-mesenchymal transition (EMT) and neuroendocrine transdifferentiation (NEtD) programs. EMT has established roles in promoting biological phenotypes associated with tumor progression (migration/invasion, tumor cell survival, cancer stem cell-like properties, resistance to radiation and chemotherapy) in multiple human cancer types. NEtD in prostate cancer is associated with resistance to therapy, visceral metastasis, and aggressive disease. Thus, activation of these programs via inhibition of the androgen axis provides a mechanism by which tumor cells can adapt to promote disease recurrence and progression. Brachyury, Axl, MEK, and Aurora kinase A are molecular drivers of these programs, and inhibitors are currently in clinical trials to determine therapeutic applications. Understanding tumor cell plasticity will be important in further defining the rational use of androgen-targeted therapies clinically and provides an opportunity for intervention to prolong survival of men with metastatic prostate cancer.
Resumo:
It is becoming increasing clear that microRNAs contribute to the regulation of many biological processes, including wound healing. After injury, keratinocytes need to undergo what is known as an epithelial-to-mesenchymal transition (EMT) to initiate re-epithelialisation. During this process, keratinocytes reduce their attachment to the underlying matrix, extend membrane protrusions, become motile and migrate over the wound bed, affecting wound closure. MicroRNAs that regulate EMT are aberrantly upregulated in keratinocytes at the edge of non-healing wounds and potentially play a role in the chronicity of these wounds. In vitro and in vivo, downregulation of these microRNAs promotes EMT and migration, facilitating re-epithelialisation in wound models. This review will focus on the role of microRNAs that regulate or have potential to regulate EMT and re-epithelialisation during wound healing
Resumo:
Objectives: Head and neck squamous cell carcinoma (HNSCC) is a heterogeneous tumour type which necessitates multiple invitro models to attain an appreciation of its multiple subtypes. The phenomenon of epithelial-mesenchymal transition (EMT) isimportant to the development of a metastatic cancer cell phenotype being relevant to the ability of cancer cells to intravasate intovasculature and to invade tissues. The role of EMT in human papilloma virus (HPV) positive HNSCC is not well understood. Thispaper aims to characterize seven HNSCC cell lines (FaDu, SCC-25, SCC-15, CAL27, RPMI2650) including two new HPV-16positive HNSCC cell lines (UD-SCC2, 93-VU-147T) for their epithelial and mesenchymal properties. Materials and methods: A panel of HNSCC cell lines from multiple head and neck anatomical sites were profiled for basalexpression of epithelial and mesenchymal characteristics at mRNA, protein and functional levels (proliferative, migratory andinvasive properties). Furthermore, 3D spheroid forming capabilities were investigated. Results: We found that the HPV-16 positive cell line, in particular UD-SCC2 demonstrated a more invasive and mesenchymalphenotype at the molecular and functional levels suggesting HPV infection may mediate some of these cellular properties.Moreover, HPV-negative cell lines were not strictly epithelial presenting with a dynamic range of expression. Conclusions: This study presents the molecular and phenotypic diversity of HNSCC cell lines. It highlights the need formore studies in this field and a scoring system where HNSCC cell lines are ranked according to their respective epithelial andmesenchymal nature. This data will be useful to anyone modelling HNSCC behaviour, providing a molecular context which willenable them to decipher cell phenotypes and to develop therapies which block EMT progression.
Resumo:
Circulating tumor cells (CTCs) are the seeds for cancer metastases development, which is responsible for >90% of cancer-related deaths. Accurate quantification of CTCs in human fluids could be an invaluable tool for understanding cancer prognosis, delivering personalized medicine to prevent metastasis and finding cancer therapy effectiveness. Although CTCs were first discovered more than 200 years ago, until now it has been a nightmare for clinical practitioners to capture and diagnose CTCs in clinical settings. Our society needs rapid, sensitive, and reliable assays to identify the CTCs from blood in order to help save millions of lives. Due to the phenotypic EMT transition, CTCs are undetected for more than one-third of metastatic breast cancer patients in clinics. To tackle the above challenges, the first volume in “Circulating Tumor Cells (CTCs): Detection Methods, Health Impact and Emerging Clinical Challenges discusses recent developments of different technologies, which have the capability to target and elucidate the phenotype heterogenity of CTCS. It contains seven chapters written by world leaders in this area, covering basic science to possible device design which can have beneficial applications in society. This book is unique in its design and content, providing an in-depth analysis to elucidate biological mechanisms of cancer disease progression, CTC detection challenges, possible health effects and the latest research on evolving technologies which have the capability to tackle the above challenges. It describes the broad range of coverage on understanding CTCs biology from early predictors of the metastatic spread of cancer, new promising technology for CTC separation and detection in clinical environment and monitoring therapy efficacy via finding the heterogeneous nature of CTCs. (Imprint: Nova Biomedical)
Resumo:
Recent reports provide evidence that the epithelial-to-mesenchymal transition (EMT) plays a key role in prostate cancer (PCa) metastasis and therapy resistance. We have recently identified the cell surface receptor, Neuropilin-1 (NRP1) to be increased during epithelial-mesenchymal transition (EMT) and this study aims to determine whether the inhibition of NRP1 will be a feasible therapeutic strategy for blocking PCa metastasis and therapy resistance.
Resumo:
Despite recent recognition that the epithelial-mesenchymal transition (EMT) program acts in a dynamic manner (termed Epithelial to Mesenchymal Plasticity or EMP) during carcinoma metastasis, it has largely been ignored in the discovery and development of EMT-targeted therapies. In part, this has stemmed from a lack of preclinical models that can mimic the full dynamic nature of EMP and the perception that the EMT-reverting transition [or mesenchymal-epithelial reverting transition; (MErT)] is a mere antithesis of EMT. The objective of this study was to develop the first PCa model capable of recapitulating the dynamic nature of EMP.