466 resultados para Drainage engineering
Resumo:
"This book investigates the origins and implications of the securitization crisis, described by the chief executive of ANZ as a "financial services bloodbath". Based on extensive interviews it offers an integrated series of case studies drawn from the United States, the United Kingdom and Australia. A central purpose is to not only chart what went wrong with the investment houses and why the regulatory systems failed, but also provide policy guidance. The book therefore combines the empirical with the normative. In so doing, it provides a route map to navigate one of the most significant financial and regulatory failures in modern times."
Resumo:
Decision Support System (DSS) has played a significant role in construction project management. This has been proven that a lot of DSS systems have been implemented throughout the whole construction project life cycle. However, most research only concentrated in model development and left few fundamental aspects in Information System development. As a result, the output of researches are complicated to be adopted by lay person particularly those whom come from a non-technical background. Hence, a DSS should hide the abstraction and complexity of DSS models by providing a more useful system which incorporated user oriented system. To demonstrate a desirable architecture of DSS particularly in public sector planning, we aim to propose a generic DSS framework for consultant selection. It will focus on the engagement of engineering consultant for irrigation and drainage infrastructure. The DSS framework comprise from operational decision to strategic decision level. The expected result of the research will provide a robust framework of DSS for consultant selection. In addition, the paper also discussed other issues that related to the existing DSS framework by integrating enabling technologies from computing. This paper is based on the preliminary case study conducted via literature review and archival documents at Department of Irrigation and Drainage (DID) Malaysia. The paper will directly affect to the enhancement of consultant pre-qualification assessment and selection tools. By the introduction of DSS in this area, the selection process will be more efficient in time, intuitively aided qualitative judgment, and transparent decision through aggregation of decision among stakeholders.
Resumo:
In this paper we discuss our current efforts to develop and implement an exploratory, discovery mode assessment item into the total learning and assessment profile for a target group of about 100 second level engineering mathematics students. The assessment item under development is composed of 2 parts, namely, a set of "pre-lab" homework problems (which focus on relevant prior mathematical knowledge, concepts and skills), and complementary computing laboratory exercises which are undertaken within a fixed (1 hour) time frame. In particular, the computing exercises exploit the algebraic manipulation and visualisation capabilities of the symbolic algebra package MAPLE, with the aim of promoting understanding of certain mathematical concepts and skills via visual and intuitive reasoning, rather than a formal or rigorous approach. The assessment task we are developing is aimed at providing students with a significant learning experience, in addition to providing feedback on their individual knowledge and skills. To this end, a noteworthy feature of the scheme is that marks awarded for the laboratory work are primarily based on the extent to which reflective, critical thinking is demonstrated, rather than the amount of CBE-style tasks completed by the student within the allowed time. With regard to student learning outcomes, a novel and potentially critical feature of our scheme is that the assessment task is designed to be intimately linked to the overall course content, in that it aims to introduce important concepts and skills (via individual student exploration) which will be revisited somewhat later in the pedagogically more restrictive formal lecture component of the course (typically a large group plenary format). Furthermore, the time delay involved, or "incubation period", is also a deliberate design feature: it is intended to allow students the opportunity to undergo potentially important internal re-adjustments in their understanding, before being exposed to lectures on related course content which are invariably delivered in a more condensed, formal and mathematically rigorous manner. In our presentation, we will discuss in more detail our motivation and rationale for trailing such a scheme for the targeted student group. Some of the advantages and disadvantages of our approach (as we perceived them at the initial stages) will also be enumerated. In a companion paper, the theoretical framework for our approach will be more fully elaborated, and measures of student learning outcomes (as obtained from eg. student provided feedback) will be discussed.
Resumo:
In this study, poly (e-caprolactone) [PCL] and its collagen composite blend (PCL=Col) were fabricated to scaffolds using electrospinning method. Incorporated collagen was present on the surface of the fibers, and it modulated the attachment and proliferation of pig bone marrow mesenchymal cells (pBMMCs). Osteogenic differentiation markers were more pronounced when these cells were cultured on PCL=Col fibrous meshes, as determined by immunohistochemistry for collagen type I, osteopontin, and osteocalcin. Matrix mineralization was observed only on osteogenically induced PCL=Col constructs. Long bone analogs were created by wrapping osteogenic cell sheets around the PCL=Col meshes to form hollow cylindrical cell-scaffold constructs. Culturing these constructs under dynamic conditions enhanced bone-like tissue formation and mechanical strength.We conclude that electrospun PCL=Col mesh is a promising material for bone engineering applications. Its combination with osteogenic cell sheets offers a novel and promising strategy for engineering of tubular bone analogs.
Resumo:
Technology platforms originally developed for tissue engineering applications produce valuable models that mimic three-dimensional (3D) tissue organization and function to enhance the understanding of cell/tissue function under normal and pathological situations. These models show that when replicating physiological and pathological conditions as closely as possible investigators are allowed to probe the basic mechanisms of morphogenesis, differentiation and cancer. Significant efforts investigating angiogenetic processes and factors in tumorigenesis are currently undertaken to establish ways of targeting angiogenesis in tumours. Anti-angiogenic agents have been accepted for clinical application as attractive targeted therapeutics for the treatment of cancer. Combining the areas of tumour angiogenesis, combination therapies and drug delivery systems is therefore closely related to the understanding of the basic principles that are applied in tissue engineering models. Studies with 3D model systems have repeatedly identified complex interacting roles of matrix stiffness and composition, integrins, growth factor receptors and signalling in development and cancer. These insights suggest that plasticity, regulation and suppression of these processes can provide strategies and therapeutic targets for future cancer therapies. The historical perspective of the fields of tissue engineering and controlled release of therapeutics, including inhibitors of angiogenesis in tumours is becoming clearly evident as a major future advance in merging these fields. New delivery systems are expected to greatly enhance the ability to deliver drugs locally and in therapeutic concentrations to relevant sites in living organisms. Investigating the phenomena of angiogenesis and anti-angiogenesis in 3D in vivo models such as the Arterio-Venous (AV) loop mode in a separated and isolated chamber within a living organism adds another significant horizon to this perspective and opens new modalities for translational research in this field.
Resumo:
Currently, well-established clinical therapeutic approaches for bone reconstruction are restricted to the transplantation of autografts and allografts, and the implantation of metal devices or ceramic-based implants to assist bone regeneration. Bone grafts possess osteoconductive and osteoinductive properties, however they are limited in access and availability and associated with donor site morbidity, haemorrhage, risk of infection, insufficient transplant integration, graft devitalisation, and subsequent resorption resulting in decreased mechanical stability. As a result, recent research focuses on the development of alternative therapeutic concepts. The field of tissue engineering has emerged as an important approach to bone regeneration. However, bench to bedside translations are still infrequent as the process towards approval by regulatory bodies is protracted and costly, requiring both comprehensive in vitro and in vivo studies. The subsequent gap between research and clinical translation, hence commercialization, is referred to as the ‘Valley of Death’ and describes a large number of projects and/or ventures that are ceased due to a lack of funding during the transition from product/technology development to regulatory approval and subsequently commercialization. One of the greatest difficulties in bridging the Valley of Death is to develop good manufacturing processes (GMP) and scalable designs and to apply these in pre-clinical studies. In this article, we describe part of the rationale and road map of how our multidisciplinary research team has approached the first steps to translate orthopaedic bone engineering from bench to bedside byestablishing a pre-clinical ovine critical-sized tibial segmental bone defect model and discuss our preliminary data relating to this decisive step.
Resumo:
Many nations are experiencing a decline in the number of graduating engineers, an overall poor preparedness for engineering studies in tertiary institutions, and a lack of diversity in the field. Given the increasing importance of mathematics, science, engineering, and technology in our world, it is imperative that we foster an interest and drive to participate in engineering from an early age. This discuission paper argues for the intergration of engineering education within the elementary and middle school mathematics curricula. In doing so, we offer a definition of engineering education and address its core goals; consider some perceptions of engineering and engineering education held by teachers and students; and offer one approach to promoting engineering education within the elementary and middle school mathematics curriculum, namely through mathematical modeling.
Resumo:
This paper argues for a future-oriented, inclusion of Engineering Model Eliciting Activities (EngMEAs) in elementary mathematics curricula. In EngMEAs students work with meaningful engineering problems that capitalise on and extend their existing mathematics and science learning, to develop, revise and document powerful models, while working in groups. The models developed by six groups of 12-year students in solving the Natural Gas activity are presented. Results showed that student models adequately solved the problem, although student models did not take into account all the data provided. Student solutions varied to the extent students employed the engineering context in their models and to their understanding of the mathematical concepts involved in the problem. Finally, recommendations for implementing EngMEAs and for further research are discussed.
Resumo:
Engineering education for elementary school students is a new and increasingly important domain of research by mathematics, science, technology, and engineering educators. Recent research has raised questions about the context of engineering problems that are meaningful, engaging, and inspiring for young students. In the present study an environmental engineering activity was implemented in two classes of 11-year-old students in Cyprus. The problem required students to use the data to develop a procedure for selecting among alternative countries from which to buy water. Students created a range of models that adequately solved the problem although not all models took into account all of the data provided. The models varied in the number of problem factors taken into consideration and also in the different approaches adopted in dealing with the problem factors. At least two groups of students integrated into their models the environmental aspect of the problem (energy consumption, water pollution) and further refined their models. Results provide evidence that engineering model-eliciting activities can be successfully integrated in the elementary mathematics curriculum. These activities provide rich opportunities for students to deal with engineering contexts and to apply their learning in mathematics and science to solving real-world engineering problems.
Resumo:
This paper first describes a new three-year, longitudinal project that is implementing engineering education in three middle schools in Australia (grade levels 7-9). This important domain is untapped in Australia. Hence, as a starting point, we conducted a context analysis to help situate engineering education in a school system. We report on this analysis with respect to findings from one of two literature-based surveys that gathered middle-school student responses in mathematics (n=172) and science (n=166) towards understanding their dispositions for engineering education. ANOVA indicated gender differences for 3 out of 23 items in both mathematics and science. In addition, the majority of students agreed or strongly agreed with 17 of the 23 survey items, however, there were some differences between mathematics and science. We conclude the paper with some recommendations for establishing engineering education in schools, including the development of partnerships among engineering and education faculties, school systems, and industry to develop contemporary engineering resources to support school-level mathematics, science, and technology.
Resumo:
Many nations are experiencing a decline in the number of graduating engineers, an overall poor preparedness for engineering studies in tertiary institutions, and a lack of diversity in the field. Given the increasing importance of mathematics, science, engineering, and technology in our world, it is imperative that we foster an interest and drive to participate in engineering from an early age. This discussion paper argues for the integration of engineering education within the elementary and middle school mathematics curricula. In doing so, we offer a definition of engineering education and address its core goals; consider some perceptions of engineering and engineering education held by teachers and students; and offer one approach to promoting engineering education within the elementary and middle school mathematics curriculum, namely through mathematical modeling.
Analysing preservice teachers' potential for implementing engineering education in the middle school
Resumo:
Engineering is pivotal to any country's development. Yet there are insufficient engineers to take up available positions in many countries, including Australia (Engineers Australia, 2008). Engineering education is limited in Australia at the primary, middle and high school levels. One of the starting points for addressing this shortfall lies in preservice teacher education. This study explores second-year preservice teachers' potential to teach engineering in middle school, following their engagement with engineering concepts in their science curriculum unit and their teaching of engineering activities to Year 7 students. Using a literature-based pretest-posttest survey, items were categorised into four constructs (ie. personal professional attributes, student motivation, pedagogical knowledge and fused curricula). Results indicated that the preservice teachers' responses had not changed for instilling positive attitudes (88%) and accepting advice from colleagues (94%). However, there was statistical significance with 9 of the 25 survey items (p<0.05) after the preservice teachers' involvement in engineering activities. Fusing engineering education with other subjects, such as mathematics and science, is an essential first step in promoting preservice teachers' potential to implement engineering education in the middle school.
Resumo:
Articular cartilage damage is a persistent and increasing problem with the aging population, and treatments to achieve biological repair or restoration remain a challenge. Cartilage tissue engineering approaches have been investigated for over 20 years, but have yet to achieve the consistency and effectiveness for widespread clinical use. One of the potential reasons for this is that the engineered tissues do not have or establish the normal zonal organization of cells and extracellular matrix that appears critical for normal tissue function. A number of approaches are being taken currently to engineer tissue that more closely mimics the organization of native articular cartilage. This review focuses on the zonal organization of native articular cartilage, strategies being used to develop such organization, the reorganization that occurs after culture or implantation, and future prospects for the tissue engineering of articular cartilage with biomimetic zones.
Resumo:
There is a growing need for international transparency of engineering qualifications, and mechanisms to support and facilitate student mobility. In response, there are a number of global initiatives attempting to address these needs, particularly in Europe, North America and Australia. The Conceive-Design-Implement-Operate (CDIO) Initiative has a set of standards, competencies, and proficiency levels developed through a global community of practice. It is a well-structured framework in which best-practice internationalisation and student mobility can be embedded. However, the current 12 CDIO Standards do not address international qualifications or student mobility. Based on an environmental scan of global activities, the underpinning principles of best practice are identified and form the basis of the proposed 13th CDIO Standard — “Internationalization and Mobility”.
Resumo:
The CDIO Initiative has been globally recognised as an enabler for engineering education reform. With the CDIO process, the CDIO Standards and the CDIO Syllabus, many scholarly contributions have been made around cultural change, curriculum reform and learning environments. In the Australasian region, reform is gaining significant momentum within the engineering education community, the profession, and higher education institutions. This paper presents the CDIO Syllabus cast into the Australian context by mapping it to the Engineers Australia Graduate Attributes, the Washington Accord Graduate Attributes and the Queensland University of Technology Graduate Capabilities. Furthermore, in recognition that many secondary schools and technical training institutions offer introductory engineering technology subjects, this paper presents an extended self-rating framework suited for recognising developing levels of proficiency at a preparatory level. The framework is consistent with conventional application to undergraduate programs and professional practice, but adapted for the preparatory context. As with the original CDIO framework with proficiency levels, this extended framework is informed by Bloom’s Educational Objectives. A proficiency evaluation of Queensland Study Authority’s Engineering Technology senior syllabus is demonstrated indicating proficiency levels embedded within this secondary school subject within a preparatory scope. Through this extended CDIO framework, students and faculty have greater awareness and access to tools to promote (i) student engagement in their own graduate capability development, (ii) faculty engagement in course and program design, through greater transparency and utility of the continuum of graduate capability development with associate levels of proficiency, and the context in which they exist in terms of pre-tertiary engineering studies; and (iii) course maintenance and quality audit methodology for the purpose of continuous improvement processes and program accreditation.