122 resultados para Anchoring heuristic


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work examines the effect of landmark placement on the efficiency and accuracy of risk-bounded searches over probabilistic costmaps for mobile robot path planning. In previous work, risk-bounded searches were shown to offer in excess of 70% efficiency increases over normal heuristic search methods. The technique relies on precomputing distance estimates to landmarks which are then used to produce probability distributions over exact heuristics for use in heuristic searches such as A* and D*. The location and number of these landmarks therefore influence greatly the efficiency of the search and the quality of the risk bounds. Here four new methods of selecting landmarks for risk based search are evaluated. Results are shown which demonstrate that landmark selection needs to take into account the centrality of the landmark, and that diminishing rewards are obtained from using large numbers of landmarks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The success of many knowledge-intensive industries depends on creative projects that lie at the heart of their logic of production. The temporality of such projects, however, is an issue that is insufficiently understood. To address this, we study the perceived time frame of teams that work on creative projects and its effects on project dynamics. An experiment with 267 managers assigned to creative project teams with varying time frames demonstrates that compared to creative project teams with a relatively longer time frame, project teams with a shorter time frame focus more on the immediate present, are less immersed in their task, and utilize a more heuristic mode of information processing. Furthermore, we find that time frame moderates the negative effect of team conflict on team cohesion. These results are consistent with our theory that the temporary nature of creative projects shapes different time frames among project participants, and that it is this time frame that is an important predictor of task and team processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Train delay is one of the most important indexes to evaluate the service quality of the railway. Because of the interactions of movement among trains, a delayed train may conflict with trains scheduled on other lines at junction area. Train that loses conflict may be forced to stop or slow down because of restrictive signals, which consequently leads to the loss of run-time and probably enlarges more delays. This paper proposes a time-saving train control method to recover delays as soon as possible. In the proposed method, golden section search is adopted to identify the optimal train speed at the expected time of restrictive signal aspect upgrades, which enables the train to depart from the conflicting area as soon as possible. A heuristic method is then developed to attain the advisory train speed profile assisting drivers in train control. Simulation study indicates that the proposed method enables the train to recover delays as soon as possible in case of disturbances at railway junctions, in comparison with the traditional maximum traction strategy and the green wave strategy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pedestrians’ use of mp3 players or mobile phones can pose the risk of being hit by motor vehicles. We present an approach for detecting a crash risk level using the computing power and the microphone of mobile devices that can be used to alert the user in advance of an approaching vehicle so as to avoid a crash. A single feature extractor classifier is not usually able to deal with the diversity of risky acoustic scenarios. In this paper, we address the problem of detection of vehicles approaching a pedestrian by a novel, simple, non resource intensive acoustic method. The method uses a set of existing statistical tools to mine signal features. Audio features are adaptively thresholded for relevance and classified with a three component heuristic. The resulting Acoustic Hazard Detection (AHD) system has a very low false positive detection rate. The results of this study could help mobile device manufacturers to embed the presented features into future potable devices and contribute to road safety.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The paper investigates train scheduling problems when prioritised trains and non-prioritised trains are simultaneously traversed in a single-line rail network. In this case, no-wait conditions arise because the prioritised trains such as express passenger trains should traverse continuously without any interruption. In comparison, non-prioritised trains such as freight trains are allowed to enter the next section immediately if possible or to remain in a section until the next section on the routing becomes available, which is thought of as a relaxation of no-wait conditions. With thorough analysis of the structural properties of the No-Wait Blocking Parallel-Machine Job-Shop-Scheduling (NWBPMJSS) problem that is originated in this research, an innovative generic constructive algorithm (called NWBPMJSS_Liu-Kozan) is proposed to construct the feasible train timetable in terms of a given order of trains. In particular, the proposed NWBPMJSS_Liu-Kozan constructive algorithm comprises several recursively-used sub-algorithms (i.e. Best-Starting-Time-Determination Procedure, Blocking-Time-Determination Procedure, Conflict-Checking Procedure, Conflict-Eliminating Procedure, Tune-up Procedure and Fine-tune Procedure) to guarantee feasibility by satisfying the blocking, no-wait, deadlock-free and conflict-free constraints. A two-stage hybrid heuristic algorithm (NWBPMJSS_Liu-Kozan-BIH) is developed by combining the NWBPMJSS_Liu-Kozan constructive algorithm and the Best-Insertion-Heuristic (BIH) algorithm to find the preferable train schedule in an efficient and economical way. Extensive computational experiments show that the proposed methodology is promising because it can be applied as a standard and fundamental toolbox for identifying, analysing, modelling and solving real-world scheduling problems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This research deals with an innovative methodology for optimising the coal train scheduling problem. Based on our previously published work, generic solution techniques are developed by utilising a “toolbox” of standard well-solved standard scheduling problems. According to our analysis, the coal train scheduling problem can be basically modelled a Blocking Parallel-Machine Job-Shop Scheduling (BPMJSS) problem with some minor constraints. To construct the feasible train schedules, an innovative constructive algorithm called the SLEK algorithm is proposed. To optimise the train schedule, a three-stage hybrid algorithm called the SLEK-BIH-TS algorithm is developed based on the definition of a sophisticated neighbourhood structure under the mechanism of the Best-Insertion-Heuristic (BIH) algorithm and Tabu Search (TS) metaheuristic algorithm. A case study is performed for optimising a complex real-world coal rail system in Australia. A method to calculate the lower bound of the makespan is proposed to evaluate results. The results indicate that the proposed methodology is promising to find the optimal or near-optimal feasible train timetables of a coal rail system under network and terminal capacity constraints.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, No-Wait, No-Buffer, Limited-Buffer, and Infinite-Buffer conditions for the flow-shop problem (FSP) have been investigated. These four different buffer conditions have been combined to generate a new class of scheduling problem, which is significant for modelling many real-world scheduling problems. A new heuristic algorithm is developed to solve this strongly NP-hard problem. Detailed numerical implementations have been analysed and promising results have been achieved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we propose three meta-heuristic algorithms for the permutation flowshop (PFS) and the general flowshop (GFS) problems. Two different neighborhood structures are used for these two types of flowshop problem. For the PFS problem, an insertion neighborhood structure is used, while for the GFS problem, a critical-path neighborhood structure is adopted. To evaluate the performance of the proposed algorithms, two sets of problem instances are tested against the algorithms for both types of flowshop problems. The computational results show that the proposed meta-heuristic algorithms with insertion neighborhood for the PFS problem perform slightly better than the corresponding algorithms with critical-path neighborhood for the GFS problem. But in terms of computation time, the GFS algorithms are faster than the corresponding PFS algorithms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this paper is to show how project management governance is addressed through the use of a specific meta-method. Governance is defined here on two criteria: accountability and performance. Accountability is promoted through transparency and performance is promoted by responsive and responsible decision-making. According to a systemic perspective, transparency and decision-making involve having information, tacit or explicit knowledge, as well as understanding of the context, the different parameters and variables, their interaction and conditions of change. Although this method of methods was built according a heuristic process involving 25 years of various researches and consulting activities, it seems appropriate to draw its foundations. I clarify first my epistemological position and the notion of project and project management, as Art and Science. This lead me to define a "Be" / "Have" posture to this regards. Then, the main theoretical roots of MAP Method are exposed: Boisot' s Social Learning Cycle, Praxeology and Theory of Convention. Then we introduced the main characteristics of the method and the 17 methods and tools constituting MAP "tool box", thus with regard to the project management governance perspective. Finally, I discuss the integration of two managerial modes (operational and project modes) and the consequence in term of governance in a specific socio-techno-economic project/context ecosystem.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A Multimodal Seaport Container Terminal (MSCT) is a complex system which requires careful planning and control in order to operate efficiently. It consists of a number of subsystems that require optimisation of the operations within them, as well as synchronisation of machines and containers between the various subsystems. Inefficiency in the terminal can delay ships from their scheduled timetables, as well as cause delays in delivering containers to their inland destinations, both of which can be very costly to their operators. The purpose of this PhD thesis is to use Operations Research methodologies to optimise and synchronise these subsystems as an integrated application. An initial model is developed for the overall MSCT; however, due to a large number of assumptions that had to be made, as well as other issues, it is found to be too inaccurate and infeasible for practical use. Instead, a method of developing models for each subsystem is proposed that then be integrated with each other. Mathematical models are developed for the Storage Area System (SAS) and Intra-terminal Transportation System (ITTS). The SAS deals with the movement and assignment of containers to stacks within the storage area, both when they arrive and when they are rehandled to retrieve containers below them. The ITTS deals with scheduling the movement of containers and machines between the storage areas and other sections of the terminal, such as the berth and road/rail terminals. Various constructive heuristics are explored and compared for these models to produce good initial solutions for large-sized problems, which are otherwise impractical to compute by exact methods. These initial solutions are further improved through the use of an innovative hyper-heuristic algorithm that integrates the SAS and ITTS solutions together and optimises them through meta-heuristic techniques. The method by which the two models can interact with each other as an integrated system will be discussed, as well as how this method can be extended to the other subsystems of the MSCT.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Network RTK (Real-Time Kinematic) is a technology that is based on GPS (Global Positioning System) or more generally on GNSS (Global Navigation Satellite System) observations to achieve centimeter-level accuracy positioning in real time. It is enabled by a network of Continuously Operating Reference Stations (CORS). CORS placement is an important problem in the design of network RTK as it directly affects not only the installation and running costs of the network RTK, but also the Quality of Service (QoS) provided by the network RTK. In our preliminary research on the CORS placement, we proposed a polynomial heuristic algorithm for a so-called location-based CORS placement problem. From a computational point of view, the location-based CORS placement is a largescale combinatorial optimization problem. Thus, although the heuristic algorithm is efficient in computation time it may not be able to find an optimal or near optimal solution. Aiming at improving the quality of solutions, this paper proposes a repairing genetic algorithm (RGA) for the location-based CORS placement problem. The RGA has been implemented and compared to the heuristic algorithm by experiments. Experimental results have shown that the RGA produces better quality of solutions than the heuristic algorithm.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In Australia, railway systems play a vital role in transporting the sugarcane crop from farms to mills. The sugarcane transport system is very complex and uses daily schedules, consisting of a set of locomotives runs, to satisfy the requirements of the mill and harvesters. The total cost of sugarcane transport operations is very high; over 35% of the total cost of sugarcane production in Australia is incurred in cane transport. Efficient schedules for sugarcane transport can reduce the cost and limit the negative effects that this system can have on the raw sugar production system. There are several benefits to formulating the train scheduling problem as a blocking parallel-machine job shop scheduling (BPMJSS) problem, namely to prevent two trains passing in one section at the same time; to keep the train activities (operations) in sequence during each run (trip) by applying precedence constraints; to pass the trains on one section in the correct order (priorities of passing trains) by applying disjunctive constraints; and, to ease passing trains by solving rail conflicts by applying blocking constraints and Parallel Machine Scheduling. Therefore, the sugarcane rail operations are formulated as BPMJSS problem. A mixed integer programming and constraint programming approaches are used to describe the BPMJSS problem. The model is solved by the integration of constraint programming, mixed integer programming and search techniques. The optimality performance is tested by Optimization Programming Language (OPL) and CPLEX software on small and large size instances based on specific criteria. A real life problem is used to verify and validate the approach. Constructive heuristics and new metaheuristics including simulated annealing and tabu search are proposed to solve this complex and NP-hard scheduling problem and produce a more efficient scheduling system. Innovative hybrid and hyper metaheuristic techniques are developed and coded using C# language to improve the solutions quality and CPU time. Hybrid techniques depend on integrating heuristic and metaheuristic techniques consecutively, while hyper techniques are the complete integration between different metaheuristic techniques, heuristic techniques, or both.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Improving energy efficiency has become increasingly important in data centers in recent years to reduce the rapidly growing tremendous amounts of electricity consumption. The power dissipation of the physical servers is the root cause of power usage of other systems, such as cooling systems. Many efforts have been made to make data centers more energy efficient. One of them is to minimize the total power consumption of these servers in a data center through virtual machine consolidation, which is implemented by virtual machine placement. The placement problem is often modeled as a bin packing problem. Due to the NP-hard nature of the problem, heuristic solutions such as First Fit and Best Fit algorithms have been often used and have generally good results. However, their performance leaves room for further improvement. In this paper we propose a Simulated Annealing based algorithm, which aims at further improvement from any feasible placement. This is the first published attempt of using SA to solve the VM placement problem to optimize the power consumption. Experimental results show that this SA algorithm can generate better results, saving up to 25 percentage more energy than First Fit Decreasing in an acceptable time frame.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Today’s highly competitive market influences the manufacturing industry to improve their production systems to become the optimal system in the shortest cycle time as possible. One of most common problems in manufacturing systems is the assembly line balancing problem. The assembly line balancing problem involves task assignments to workstations with optimum line efficiency. The line balancing technique, namely “COMSOAL”, is an abbreviation of “Computer Method for Sequencing Operations for Assembly Lines”. Arcus initially developed the COMSOAL technique in 1966 [1], and it has been mainly applied to solve assembly line balancing problems [6]. The most common purposes of COMSOAL are to minimise idle time, optimise production line efficiency, and minimise the number of workstations. Therefore, this project will implement COMSOAL to balance an assembly line in the motorcycle industry. The new solution by COMSOAL will be used to compare with the previous solution that was developed by Multi‐Started Neighborhood Search Heuristic (MSNSH), which will result in five aspects including cycle time, total idle time, line efficiency, average daily productivity rate, and the workload balance. The journal name “Optimising and simulating the assembly line balancing problem in a motorcycle manufacturing company: a case study” will be used as the case study for this project [5].

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a maintenance optimisation method for a multi-state series-parallel system considering economic dependence and state-dependent inspection intervals. The objective function considered in the paper is the average revenue per unit time calculated based on the semi-regenerative theory and the universal generating function (UGF). A new algorithm using the stochastic ordering is also developed in this paper to reduce the search space of maintenance strategies and to enhance the efficiency of optimisation algorithms. A numerical simulation is presented in the study to evaluate the efficiency of the proposed maintenance strategy and optimisation algorithms. The simulation result reveals that maintenance strategies with opportunistic maintenance and state-dependent inspection intervals are more cost-effective when the influence of economic dependence and inspection cost is significant. The study further demonstrates that the optimisation algorithm proposed in this paper has higher computational efficiency than the commonly employed heuristic algorithms.