Evolutionary placement of continuously operating reference stations of network Real-Time Kinematic
Data(s) |
01/06/2012
|
---|---|
Resumo |
Network RTK (Real-Time Kinematic) is a technology that is based on GPS (Global Positioning System) or more generally on GNSS (Global Navigation Satellite System) observations to achieve centimeter-level accuracy positioning in real time. It is enabled by a network of Continuously Operating Reference Stations (CORS). CORS placement is an important problem in the design of network RTK as it directly affects not only the installation and running costs of the network RTK, but also the Quality of Service (QoS) provided by the network RTK. In our preliminary research on the CORS placement, we proposed a polynomial heuristic algorithm for a so-called location-based CORS placement problem. From a computational point of view, the location-based CORS placement is a largescale combinatorial optimization problem. Thus, although the heuristic algorithm is efficient in computation time it may not be able to find an optimal or near optimal solution. Aiming at improving the quality of solutions, this paper proposes a repairing genetic algorithm (RGA) for the location-based CORS placement problem. The RGA has been implemented and compared to the heuristic algorithm by experiments. Experimental results have shown that the RGA produces better quality of solutions than the heuristic algorithm. |
Formato |
application/pdf |
Identificador | |
Publicador |
IEEE Computer Society Press |
Relação |
http://eprints.qut.edu.au/51473/1/CEC2012-1.pdf DOI:10.1109/CEC.2012.6256527 Tang, Maolin (2012) Evolutionary placement of continuously operating reference stations of network Real-Time Kinematic. In Proceeding if the 2012 IEEE World Congress on Computational Intelligence, IEEE Computer Society Press, International Convention Centre, Brisbane, QLD, pp. 1461-1468. |
Direitos |
Copyright 2012 IEEE This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible |
Fonte |
School of Electrical Engineering & Computer Science; Science & Engineering Faculty |
Palavras-Chave | #080108 Neural Evolutionary and Fuzzy Computation #080503 Networking and Communications #genetic algorithm #placement #optimization #reference station #network RTK |
Tipo |
Conference Paper |