653 resultados para ROBOTICS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Real-world environments such as houses and offices change over time, meaning that a mobile robot’s map will become out of date. In this work, we introduce a method to update the reference views in a hybrid metrictopological map so that a mobile robot can continue to localize itself in a changing environment. The updating mechanism, based on the multi-store model of human memory, incorporates a spherical metric representation of the observed visual features for each node in the map, which enables the robot to estimate its heading and navigate using multi-view geometry, as well as representing the local 3D geometry of the environment. A series of experiments demonstrate the persistence performance of the proposed system in real changing environments, including analysis of the long-term stability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For robots operating in outdoor environments, a number of factors, including weather, time of day, rough terrain, high speeds, and hardware limitations, make performing vision-based simultaneous localization and mapping with current techniques infeasible due to factors such as image blur and/or underexposure, especially on smaller platforms and low-cost hardware. In this paper, we present novel visual place-recognition and odometry techniques that address the challenges posed by low lighting, perceptual change, and low-cost cameras. Our primary contribution is a novel two-step algorithm that combines fast low-resolution whole image matching with a higher-resolution patch-verification step, as well as image saliency methods that simultaneously improve performance and decrease computing time. The algorithms are demonstrated using consumer cameras mounted on a small vehicle in a mixed urban and vegetated environment and a car traversing highway and suburban streets, at different times of day and night and in various weather conditions. The algorithms achieve reliable mapping over the course of a day, both when incrementally incorporating new visual scenes from different times of day into an existing map, and when using a static map comprising visual scenes captured at only one point in time. Using the two-step place-recognition process, we demonstrate for the first time single-image, error-free place recognition at recall rates above 50% across a day-night dataset without prior training or utilization of image sequences. This place-recognition performance enables topologically correct mapping across day-night cycles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose a topological localization method based on optical flow information. We analyse the statistical characteristics of the optical flow signal and demonstrate that the flow vectors can be used to identify and describe key locations in the environment. The key locations (nodes) correspond to significant scene changes and depth discontinuities. Since optical flow vectors contain position, magnitude and angle information, for each node, we extract low and high order statistical moments of the vectors and use them as descriptors for that node. Once a database of nodes and their corresponding optical flow features is created, the robot can perform topological localization by using the Mahalanobis distance between the current frame and the database. This is supported by field trials, which illustrate the repeatability of the proposed method for detecting and describing key locations in indoor and outdoor environments in challenging and diverse lighting conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Describes the development and testing of a robotic system for charging blast holes in underground mining. The automation system supports four main tactical functions: detection of blast holes; teleoperated arm pose control; automatic arm pose control; and human-in-the-loop visual servoing. We present the system architecture, and analyse the major components, Hole detection is crucial for automating the process, and we discuss theoretical and practical aspects in detail. The sensors used are laser range finders and cameras installed in the end effector. For automatic insertion, we consider image processing techniques to support visual servoing the tool to the hole. We also discuss issues surrounding the control of heavy-duty mining manipulators, in particular, friction, stiction, and actuator saturation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mining industry is highly suitable for the application of robotics and automation technology, since the work is arduous, dangerous, and often repetitive. This paper presents a broad overview of the issues involved in the development of a physically large and complex field robotic system—a 3500-tonne mining machine (dragline). Draglines are “walking cranes” used in open-pit coal mining to remove the material covering a coal seam. The critical issues of robust load position sensing, modeling of the dynamics of the electrical drive system and the swinging load, control strategies, the operator interface, and automation system architecture are addressed. An important aspect of this system is that it must work cooperatively with a human operator, seamlessly passing control back and forth in order to achieve the main aim—increased productivity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sparse optical flow algorithms, such as the Lucas-Kanade approach, provide more robustness to noise than dense optical flow algorithms and are the preferred approach in many scenarios. Sparse optical flow algorithms estimate the displacement for a selected number of pixels in the image. These pixels can be chosen randomly. However, pixels in regions with more variance between the neighbours will produce more reliable displacement estimates. The selected pixel locations should therefore be chosen wisely. In this study, the suitability of Harris corners, Shi-Tomasi's “Good features to track", SIFT and SURF interest point extractors, Canny edges, and random pixel selection for the purpose of frame-by-frame tracking using a pyramidical Lucas-Kanade algorithm is investigated. The evaluation considers the important factors of processing time, feature count, and feature trackability in indoor and outdoor scenarios using ground vehicles and unmanned aerial vehicles, and for the purpose of visual odometry estimation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A method for calculating visual odometry for ground vehicles with car-like kinematic motion constraints similar to Ackerman's steering model is presented. By taking advantage of this non-holonomic driving constraint we show a simple and practical solution to the odometry calculation by clever placement of a single camera. The method has been implemented successfully on a large industrial forklift and a Toyota Prado SUV. Results from our industrial test site is presented demonstrating the applicability of this method as a replacement for wheel encoder-based odometry for these vehicles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This special issue of the Journal of Field Robotics focuses on low altitude flight of UAVs with a particular emphasis on fully implemented systems that were tested in relevant environments or deployed in regular operations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper is about localising across extreme lighting and weather conditions. We depart from the traditional point-feature-based approach as matching under dramatic appearance changes is a brittle and hard thing. Point feature detectors are fixed and rigid procedures which pass over an image examining small, low-level structure such as corners or blobs. They apply the same criteria applied all images of all places. This paper takes a contrary view and asks what is possible if instead we learn a bespoke detector for every place. Our localisation task then turns into curating a large bank of spatially indexed detectors and we show that this yields vastly superior performance in terms of robustness in exchange for a reduced but tolerable metric precision. We present an unsupervised system that produces broad-region detectors for distinctive visual elements, called scene signatures, which can be associated across almost all appearance changes. We show, using 21km of data collected over a period of 3 months, that our system is capable of producing metric localisation estimates from night-to-day or summer-to-winter conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This chapter describes decentralized data fusion algorithms for a team of multiple autonomous platforms. Decentralized data fusion (DDF) provides a useful basis with which to build upon for cooperative information gathering tasks for robotic teams operating in outdoor environments. Through the DDF algorithms, each platform can maintain a consistent global solution from which decisions may then be made. Comparisons will be made between the implementation of DDF using two probabilistic representations. The first, Gaussian estimates and the second Gaussian mixtures are compared using a common data set. The overall system design is detailed, providing insight into the overall complexity of implementing a robust DDF system for use in information gathering tasks in outdoor UAV applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper details the implementation and trialling of a prototype in-bucket bulk density monitor on a production dragline. Bulk density information can provide feedback to mine planning and scheduling to improve blasting and consequently facilitating optimal bucket sizing. The bulk density measurement builds upon outcomes presented in the AMTC2009 paper titled ‘Automatic In-Bucket Volume Estimation for Dragline Operations’ and utilises payload information from a commercial dragline monitor. While the previous paper explains the algorithms and theoretical basis for the system design and scaled model testing this paper will focus on the full scale implementation and the challenges involved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper addresses the topic of real-time decision making by autonomous city vehicles. Beginning with an overview of the state of research, the paper presents the vehicle decision making & control systemarchitecture, explains the subcomponents which are relevant for decision making (World Model and Driving Maneuver subsystem), and presents the decision making process. Experimental test results confirmthe suitability of the developed approach to deal with the complex real-world urban traffic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Motion planning for planetary rovers must consider control uncertainty in order to maintain the safety of the platform during navigation. Modelling such control uncertainty is difficult due to the complex interaction between the platform and its environment. In this paper, we propose a motion planning approach whereby the outcome of control actions is learned from experience and represented statistically using a Gaussian process regression model. This mobility prediction model is trained using sample executions of motion primitives on representative terrain, and predicts the future outcome of control actions on similar terrain. Using Gaussian process regression allows us to exploit its inherent measure of prediction uncertainty in planning. We integrate mobility prediction into a Markov decision process framework and use dynamic programming to construct a control policy for navigation to a goal region in a terrain map built using an on-board depth sensor. We consider both rigid terrain, consisting of uneven ground, small rocks, and non-traversable rocks, and also deformable terrain. We introduce two methods for training the mobility prediction model from either proprioceptive or exteroceptive observations, and report results from nearly 300 experimental trials using a planetary rover platform in a Mars-analogue environment. Our results validate the approach and demonstrate the value of planning under uncertainty for safe and reliable navigation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Quantum-like models can be fruitfully used to model attitude change in a social context. Next steps require data, and higher dimensional models. Here, we discuss an exploratory study that demonstrates an order effect when three question sets about Climate Beliefs, Political Affiliation and Attitudes Towards Science are presented in different orders within a larger study of n=533 subjects. A quantum-like model seems possible, and we propose a new experiment which could be used to test between three possible models for this scenario.