607 resultados para Multi-way cluster


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A key challenge for the 21st Century is to make our cities more liveable and foster economically sustainable, environmentally responsible, and socially inclusive communities. Design thinking, particularly a human-centred approach, offers a way to tackle this challenge. Findings from two recent Australian research projects highlight how facilitating sustainable, liveable communities in a humid sub-tropical environment requires an in-depth understanding of people’s perspectives, experiences and practices. Project 1 (‘Research House’) documents the reflections of a family who lived in a ‘test’ sustainable house for two years, outlining their experience and evaluations of universal design and sustainable technologies. The study family was very impressed with the natural lighting, natural ventilation, spaciousness and ease of access, which contributed significantly to their comfort and the liveability of their home. Project 2 (‘Inner-Urban High Density Living’) explored Brisbane residents’ opinions about high-density living, through a survey (n=636), interviews (n=24), site observations (over 300 hours) and environmental monitoring, assessing opinions on the liveability of their individual dwelling, the multi-unit host building and the surrounding neighbourhood. Nine areas, categorised into three general domains, were identified as essential for enhancing high density liveability. In terms of the dwelling, thermal comfort/ventilation, natural light, noise mitigation were important; shared space, good neighbour protocols, and support for environmentally sustainable behaviour were desired in the building/complex; and accessible/sustainable transport, amenities and services, sense of community were considered important in the surrounding neighbourhood. Combined, these findings emphasise the importance and complexity associated with designing liveable building, cities and communities, illustrating how adopting a design thinking, human-centred approach will help create sustainable communities that will meet the needs of current and future generations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis presents a multi-criteria optimisation study of group replacement schedules for water pipelines, which is a capital-intensive and service critical decision. A new mathematical model was developed, which minimises total replacement costs while maintaining a satisfactory level of services. The research outcomes are expected to enrich the body of knowledge of multi-criteria decision optimisation, where group scheduling is required. The model has the potential to optimise replacement planning for other types of linear asset networks resulting in bottom-line benefits for end users and communities. The results of a real case study show that the new model can effectively reduced the total costs and service interruptions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction Falls are the most frequent adverse event reported in hospitals. Approximately 30% of in-hospital falls lead to an injury and up to 2% result in a fracture. A large randomised trial found that a trained health professional providing individualised falls prevention education to older inpatients reduced falls in a cognitively intact subgroup. This study aims to investigate whether this efficacious intervention can reduce falls and be clinically useful and cost-effective when delivered in the real-life clinical environment. Methods A stepped-wedge cluster randomised trial will be used across eight subacute units (clusters) which will be randomised to one of four dates to start the intervention. Usual care on these units includes patient's screening, assessment and implementation of individualised falls prevention strategies, ongoing staff training and environmental strategies. Patients with better levels of cognition (Mini-Mental State Examination >23/30) will receive the individualised education from a trained health professional in addition to usual care while patient's feedback received during education sessions will be provided to unit staff. Unit staff will receive training to assist in intervention delivery and to enhance uptake of strategies by patients. Falls data will be collected by two methods: case note audit by research assistants and the hospital falls reporting system. Cluster-level data including patient's admissions, length of stay and diagnosis will be collected from hospital systems. Data will be analysed allowing for correlation of outcomes (clustering) within units. An economic analysis will be undertaken which includes an incremental cost-effectiveness analysis. Ethics and dissemination The study was approved by The University of Notre Dame Australia Human Research Ethics Committee and local hospital ethics committees. Results The results will be disseminated through local site networks, and future funding and delivery of falls prevention programmes within WA Health will be informed. Results will also be disseminated through peer-reviewed publications and medical conferences.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Association rule mining is one technique that is widely used when querying databases, especially those that are transactional, in order to obtain useful associations or correlations among sets of items. Much work has been done focusing on efficiency, effectiveness and redundancy. There has also been a focusing on the quality of rules from single level datasets with many interestingness measures proposed. However, with multi-level datasets now being common there is a lack of interestingness measures developed for multi-level and cross-level rules. Single level measures do not take into account the hierarchy found in a multi-level dataset. This leaves the Support-Confidence approach, which does not consider the hierarchy anyway and has other drawbacks, as one of the few measures available. In this chapter we propose two approaches which measure multi-level association rules to help evaluate their interestingness by considering the database’s underlying taxonomy. These measures of diversity and peculiarity can be used to help identify those rules from multi-level datasets that are potentially useful.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present a method for autonomously tuning the threshold between learning and recognizing a place in the world, based on both how the rodent brain is thought to process and calibrate multisensory data and the pivoting movement behaviour that rodents perform in doing so. The approach makes no assumptions about the number and type of sensors, the robot platform, or the environment, relying only on the ability of a robot to perform two revolutions on the spot. In addition, it self-assesses the quality of the tuning process in order to identify situations in which tuning may have failed. We demonstrate the autonomous movement-driven threshold tuning on a Pioneer 3DX robot in eight locations spread over an office environment and a building car park, and then evaluate the mapping capability of the system on journeys through these environments. The system is able to pick a place recognition threshold that enables successful environment mapping in six of the eight locations while also autonomously flagging the tuning failure in the remaining two locations. We discuss how the method, in combination with parallel work on autonomous weighting of individual sensors, moves the parameter dependent RatSLAM system significantly closer to sensor, platform and environment agnostic operation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The selection of optimal camera configurations (camera locations, orientations, etc.) for multi-camera networks remains an unsolved problem. Previous approaches largely focus on proposing various objective functions to achieve different tasks. Most of them, however, do not generalize well to large scale networks. To tackle this, we propose a statistical framework of the problem as well as propose a trans-dimensional simulated annealing algorithm to effectively deal with it. We compare our approach with a state-of-the-art method based on binary integer programming (BIP) and show that our approach offers similar performance on small scale problems. However, we also demonstrate the capability of our approach in dealing with large scale problems and show that our approach produces better results than two alternative heuristics designed to deal with the scalability issue of BIP. Last, we show the versatility of our approach using a number of specific scenarios.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diagnostics of rolling element bearings have been traditionally developed for constant operating conditions, and sophisticated techniques, like Spectral Kurtosis or Envelope Analysis, have proven their effectiveness by means of experimental tests, mainly conducted in small-scale laboratory test-rigs. Algorithms have been developed for the digital signal processing of data collected at constant speed and bearing load, with a few exceptions, allowing only small fluctuations of these quantities. Owing to the spreading of condition based maintenance in many industrial fields, in the last years a need for more flexible algorithms emerged, asking for compatibility with highly variable operating conditions, such as acceleration/deceleration transients. This paper analyzes the problems related with significant speed and load variability, discussing in detail the effect that they have on bearing damage symptoms, and propose solutions to adapt existing algorithms to cope with this new challenge. In particular, the paper will i) discuss the implication of variable speed on the applicability of diagnostic techniques, ii) address quantitatively the effects of load on the characteristic frequencies of damaged bearings and iii) finally present a new approach for bearing diagnostics in variable conditions, based on envelope analysis. The research is based on experimental data obtained by using artificially damaged bearings installed on a full scale test-rig, equipped with actual train traction system and reproducing the operation on a real track, including all the environmental noise, owing to track irregularity and electrical disturbances of such a harsh application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim/Background TRALI is hypothesised to develop via a two-event mechanism involving both the patieint's underlying morbidity and blood product factors. The storage of cellular products has been implicated in cases of non-antibody mediated TRALI, however the pathophysiological mechanisms are undefined. We investigated blood product storage-related modulation of inflmmatory cells and medicators involved in TRALI. Methods In an in vitro mode, fresh human whole blood was mixed with culture media (control) or LPS as a 1st event and "transfused" with 10% (v/v) pooled supernatant (SN) from Day 1 (d1, n=75) or Day 42 (D42, n=113) packed red blood cells (PRBCs) as a 2nd event. Following 6hrs, culture SN was used to assess the overall inflammatory response (cytometric bead array) and a duplicate assay containing protein transport inhibitor was used to assess neutrophil- and monocyte-specific inflmamatory responses using multi-colour flow cytometry. Panels: IL-6, IL-8, IL-10, IL-12, IL-1, TNF, MCP-1, IP-10, MIP-1. One-way ANOVA 95% CI. Results In the absence of LPS, exposure to D1 or D42 PRBC-SN reduced monocyte expression of IL-6, IL-8 and Il-10. D42 PRBC-SN also reduced monocyte IP-10, and the overall IL-8 production was increased. In the presence of LPS, D1-PRBC SN only modified overall IP-10 levels which were reduced. However, cf LPS alone, the combination of LPS and D42 PRBC-SN resulted in increased neutrophil and monocyte productionof IL-1 and IL-8 as well as reduced monocyte TNF production. Additionally, LPS and D42 PRBC-SN resulted in overall inflmmatory changes: elevated IL-8,

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on an alternative OCGM interface for a bulletin board, where a user can pin a note or a drawing, and actually shares contents. Exploiting direct and continuous manipulations, opposite to discrete gestures, to explore containers, the proposed interface supports a more natural and immediate interaction. It manages also the presence of different simultaneous users, allowing for the creation of local multimedia contents, the connection to social networks, providing a suitable working environment for cooperative and collaborative tasks in a multi-touch setup, such as touch-tables, interactive walls or multimedia boards

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Online business or Electronic Commerce (EC) is getting popular among customers today, as a result large number of product reviews have been posted online by the customers. This information is very valuable not only for prospective customers to make decision on buying product but also for companies to gather information of customers’ satisfaction about their products. Opinion mining is used to capture customer reviews and separated this review into subjective expressions (sentiment word) and objective expressions (no sentiment word). This paper proposes a novel, multi-dimensional model for opinion mining, which integrates customers’ characteristics and their opinion about any products. The model captures subjective expression from product reviews and transfers to fact table before representing in multi-dimensions named as customers, products, time and location. Data warehouse techniques such as OLAP and Data Cubes were used to analyze opinionated sentences. A comprehensive way to calculate customers’ orientation on products’ features and attributes are presented in this paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Anxiety, depressive and substance use disorders account for three quarters of the disability attributed to mental disorders and frequently co-occur. While programs for the prevention and reduction of symptoms associated with (i) substance use and (ii) mental health disorders exist, research is yet to determine if a combined approach is more effective. This paper describes the study protocol of a cluster randomised controlled trial to evaluate the effectiveness of the CLIMATE Schools Combined intervention, a universal approach to preventing substance use and mental health problems among adolescents. Methods/design Participants will consist of approximately 8400 students aged 13 to 14-years-old from 84 secondary schools in New South Wales, Western Australia and Queensland, Australia. The schools will be cluster randomised to one of four groups; (i) CLIMATE Schools Combined intervention; (ii) CLIMATE Schools - Substance Use; (iii) CLIMATE Schools - Mental Health, or (iv) Control (Health and Physical Education as usual). The primary outcomes of the trial will be the uptake and harmful use of alcohol and other drugs, mental health symptomatology and anxiety, depression and substance use knowledge. Secondary outcomes include substance use related harms, self-efficacy to resist peer pressure, general disability, and truancy. The link between personality and substance use will also be examined. Discussion Compared to students who receive the universal CLIMATE Schools - Substance Use, or CLIMATE Schools - Mental Health or the Control condition (who received usual Health and Physical Education), we expect students who receive the CLIMATE Schools Combined intervention to show greater delays to the initiation of substance use, reductions in substance use and mental health symptoms, and increased substance use and mental health knowledge

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents large, accurately calibrated and time-synchronised datasets, gathered outdoors in controlled environmental conditions, using an unmanned ground vehicle (UGV), equipped with a wide variety of sensors. It discusses how the data collection process was designed, the conditions in which these datasets have been gathered, and some possible outcomes of their exploitation, in particular for the evaluation of performance of sensors and perception algorithms for UGVs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This document describes large, accurately calibrated and time-synchronised datasets, gathered in controlled environmental conditions, using an unmanned ground vehicle equipped with a wide variety of sensors. These sensors include: multiple laser scanners, a millimetre wave radar scanner, a colour camera and an infra-red camera. Full details of the sensors are given, as well as the calibration parameters needed to locate them with respect to each other and to the platform. This report also specifies the format and content of the data, and the conditions in which the data have been gathered. The data collection was made in two different situations of the vehicle: static and dynamic. The static tests consisted of sensing a fixed ’reference’ terrain, containing simple known objects, from a motionless vehicle. For the dynamic tests, data were acquired from a moving vehicle in various environments, mainly rural, including an open area, a semi-urban zone and a natural area with different types of vegetation. For both categories, data have been gathered in controlled environmental conditions, which included the presence of dust, smoke and rain. Most of the environments involved were static, except for a few specific datasets which involve the presence of a walking pedestrian. Finally, this document presents illustrations of the effects of adverse environmental conditions on sensor data, as a first step towards reliability and integrity in autonomous perceptual systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present large, accurately calibrated and time-synchronized data sets, gathered outdoors in controlled and variable environmental conditions, using an unmanned ground vehicle (UGV), equipped with a wide variety of sensors. These include four 2D laser scanners, a radar scanner, a color camera and an infrared camera. It provides a full description of the system used for data collection and the types of environments and conditions in which these data sets have been gathered, which include the presence of airborne dust, smoke and rain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an approach to autonomously monitor the behavior of a robot endowed with several navigation and locomotion modes, adapted to the terrain to traverse. The mode selection process is done in two steps: the best suited mode is firstly selected on the basis of initial information or a qualitative map built on-line by the robot. Then, the motions of the robot are monitored by various processes that update mode transition probabilities in a Markov system. The paper focuses on this latter selection process: the overall approach is depicted, and preliminary experimental results are presented