500 resultados para McAuley Water Street Mission.
Resumo:
Due to its remarkable mechanical and biological properties, there is considerable interest in understanding, and replicating, spider silk's stress-processing mechanisms and structure-function relationships. Here, we investigate the role of water in the nanoscale mechanics of the different regions in the spider silk fibre, and their relative contributions to stress processing. We propose that the inner core region, rich in spidroin II, retains water due to its inherent disorder, thereby providing a mechanism to dissipate energy as it breaks a sacrificial amide-water bond and gains order under strain, forming a stronger amide-amide bond. The spidroin I-rich outer core is more ordered under ambient conditions and is inherently stiffer and stronger, yet does not on its own provide high toughness. The markedly different interactions of the two proteins with water, and their distribution across the fibre, produce a stiffness differential and provide a balance between stiffness, strength and toughness under ambient conditions. Under wet conditions, this balance is destroyed as the stiff outer core material reverts to the behaviour of the inner core.
Resumo:
The Coal Seam Gas (CSG) industry in Australia has grown significantly in recent years. During the gas extraction process, water is also recovered which is brackish in character. In order to facilitate beneficial reuse of the water, the CSG industry has primarily invested in Reverse Osmosis (RO) as the primary method for associated water desalination. However, the presence of alkaline earth ions in the water combined with the inherent alkalinity of the water may result in RO membrane scaling. Consequently, weak acid cation (WAC) synthetic ion exchange resins were investigated as a potential solution to this potential problem. It was shown that resins were indeed highly efficient at treating single and multi-component solutions of alkaline earth ions. The interaction of the ions with the resin was found to be considerably more complex that previously reported.
Resumo:
Interfacing carbon nanodots (C-dots) with graphitic carbon nitride (g-C3N4) produces a metal-free system that has recently demonstrated significant enhancement of photo-catalytic performance for water splitting into hydrogen [Science, 2015, 347, 970–974]. However, the underlying photo-catalytic mechanism is not fully established. Herein, we have carried out density functional theory (DFT) calculations to study the interactions between g-C3N4 and trigonal/hexagonal shaped C-dots. We find that hybrid C-dots/g-C3N4 can form a type-II van der Waals heterojunction, leading to significant reduction of band gap. The C-dot decorated g-C3N4 enhances the separation of photogenerated electron and hole pairs and the composite's visible light response. Interestingly, the band alignment of C-dots and g-C3N4 calculated by the hybrid functional method indicates that C-dots act as a spectral sensitizer in hybrid C-dots/g-C3N4 for water splitting. Our results offer new theoretical insights into this metal-free photocatalyst for water splitting.
Resumo:
With growing population and fast urbanization in Australia, it is a challenging task to maintain our water quality. It is essential to develop an appropriate statistical methodology in analyzing water quality data in order to draw valid conclusions and hence provide useful advices in water management. This paper is to develop robust rank-based procedures for analyzing nonnormally distributed data collected over time at different sites. To take account of temporal correlations of the observations within sites, we consider the optimally combined estimating functions proposed by Wang and Zhu (Biometrika, 93:459-464, 2006) which leads to more efficient parameter estimation. Furthermore, we apply the induced smoothing method to reduce the computational burden. Smoothing leads to easy calculation of the parameter estimates and their variance-covariance matrix. Analysis of water quality data from Total Iron and Total Cyanophytes shows the differences between the traditional generalized linear mixed models and rank regression models. Our analysis also demonstrates the advantages of the rank regression models for analyzing nonnormal data.
Resumo:
Water temperature measurements from Wivenhoe Dam offer a unique opportunity for studying fluctuations of temperatures in a subtropical dam as a function of time and depth. Cursory examination of the data indicate a complicated structure across both time and depth. We propose simplifying the task of describing these data by breaking the time series at each depth into physically meaningful components that individually capture daily, subannual, and annual (DSA) variations. Precise definitions for each component are formulated in terms of a wavelet-based multiresolution analysis. The DSA components are approximately pairwise uncorrelated within a given depth and between different depths. They also satisfy an additive property in that their sum is exactly equal to the original time series. Each component is based upon a set of coefficients that decomposes the sample variance of each time series exactly across time and that can be used to study both time-varying variances of water temperature at each depth and time-varying correlations between temperatures at different depths. Each DSA component is amenable for studying a certain aspect of the relationship between the series at different depths. The daily component in general is weakly correlated between depths, including those that are adjacent to one another. The subannual component quantifies seasonal effects and in particular isolates phenomena associated with the thermocline, thus simplifying its study across time. The annual component can be used for a trend analysis. The descriptive analysis provided by the DSA decomposition is a useful precursor to a more formal statistical analysis.
Resumo:
Environmental data usually include measurements, such as water quality data, which fall below detection limits, because of limitations of the instruments or of certain analytical methods used. The fact that some responses are not detected needs to be properly taken into account in statistical analysis of such data. However, it is well-known that it is challenging to analyze a data set with detection limits, and we often have to rely on the traditional parametric methods or simple imputation methods. Distributional assumptions can lead to biased inference and justification of distributions is often not possible when the data are correlated and there is a large proportion of data below detection limits. The extent of bias is usually unknown. To draw valid conclusions and hence provide useful advice for environmental management authorities, it is essential to develop and apply an appropriate statistical methodology. This paper proposes rank-based procedures for analyzing non-normally distributed data collected at different sites over a period of time in the presence of multiple detection limits. To take account of temporal correlations within each site, we propose an optimal linear combination of estimating functions and apply the induced smoothing method to reduce the computational burden. Finally, we apply the proposed method to the water quality data collected at Susquehanna River Basin in United States of America, which dearly demonstrates the advantages of the rank regression models.
Resumo:
In open-cut strip mining, waste material is placed in-pit to minimise operational mine costs. Slope failures in these spoil piles pose a significant safety risk to personnel, along with a financial risk from loss of equipment and scheduling delays. It has been observed that most spoil pile failures occur when the pit has been previously filled with water and then subsequently dewatered. The failures are often initiated at the base of spoil piles where the material can undergo significant slaking (disintegration) over time due to overburden pressure and water saturation. It is important to understand how the mechanical properties of base spoil material are affected by slaking when designing safe spoil pile slope angles, heights, and dewatering rates. In this study, fresh spoil material collected from a coal mine in Brown Basin Coalfield of Queensland, Australia was subjected to high overburden pressure (0 – 900 kPa) under saturated condition and maintained over a period of time (0 – 6 months) allowing the material to slake. To create the above conditions, laboratory designed pressure chambers were used. Once a spoil sample was slaked under certain overburden pressure over a period of time, it was tested for classification, permeability, and strength properties. Results of this testing program suggested that the slaking of saturated coal mine spoil increase with overburden pressure and the time duration over which the overburden pressure was maintained. Further, it was observed that shear strength and permeability of spoil decreased with increase in spoil slaking.
Resumo:
The stable free radical 1,1,3,3-tetramethylisoindolin-2-yloxyl (TMIO) has proved to be very suitable for use as a spin probe for a number of applications. Because it is soluble mainly in non-polar liquids, there is a need for new derivatives that can be used in a variety of environments. This has been done by introducing substituents in the 5-position of the aromatic ring, namely carboxyl (CTMIO), trimethylamino (TMTMIOI) and sodium sulphonate (NaTMIOS). An accurate ESR method was developed for the measurement of partition coefficients in n-octanol–water. For comparison purposes the method was also applied to some Tempo derivatives. The effect of temperature on the rotational correlation times and the nitrogen-14 hyperfine coupling constant of some of the spin probes was investigated. There is evidence for dimerization of CTMIO to form a biradical
Resumo:
Replacement of deteriorated water pipes is a capital-intensive activity for utility companies. Replacement planning aims to minimize total costs while maintaining a satisfactory level of service and is usually conducted for individual pipes. Scheduling replacement in groups is seen to be a better method and has the potential to provide benefits such as the reduction of maintenance costs and service interruptions. However, developing group replacement schedules is a complex task and often beyond the ability of a human expert, especially when multiple or conflicting objectives need to be catered for, such as minimization of total costs and service interruptions. This paper describes the development of a novel replacement decision optimization model for group scheduling (RDOM-GS), which enables multiple group-scheduling criteria by integrating new cost functions, a service interruption model, and optimization algorithms into a unified procedure. An industry case study demonstrates that RDOM-GS can improve replacement planning significantly and reduce costs and service interruptions.
Resumo:
The coal seam gas (CSG) industry is globally of potentially great importance economically. This study exemplifies the complex relationship between land use and management, groundwater impact and associated water treatment especially in relation to Queensland where a significant increase in the amount of gas extracted over the past 6 years has occurred. In order to effectively manage the environmental impact of the CSG industry it is necessary to appropriately understand the nature of the gas deposits, methods for gas collection, the physicochemical composition of the by-product associated water and the technologies available for water remediation. Australia is mainly considered arid and semi-arid and thus there is a need to not only beneficially reuse water resources but also protect existing ground water reservoirs such as the Great Artesian Basin (GAB). This paper focussed primarily on the Surat Basin located in Queensland and northern New South Wales. The mechanism for CSG formation, relation to local geological features, extraction approach and the potential impact/benefits of associated water was discussed. An outline of the current legislative requirements on physical and chemical properties of associated water in the Surat Basin was also provided, as well as the current treatment technologies used by the major CSG companies. This review was of significance in relation to the formulation of the most appropriate and cost effective management of associated water, while simultaneously preserving existing water resources and the environment.
Resumo:
Aim An effective catch in sculling is a critical determinant of boat velocity. This study used rowers’ performance-based judgments to compare three measures of catch slip efficiency. Two questions were addressed: (1) would rower-judged Yes strokes be faster than No strokes? and (2) which method of quantifying catch slip best reflected these judgements? Methods Eight single scullers performed two 10-min blocks of sub maximal on-water rowing at 20 strokes per minute. Every 30 s, rowers reported either Yes or No about the quality of their stroke at the catch. Results It was found that Yes strokes identified by rowers had, on average, a moderate effect advantage over No strokes with a standardised effect size of 0.43. In addition, a quicker time to positive acceleration best reflected the change in performance; where the standardised mean difference score of 0.57 for time to positive acceleration was larger than the scores of 0.47 for time to PowerLine force, and 0.35 for time to 30% peak pin force catch slip measures. For all eight rowers, Yes strokes corresponded to time to positive acceleration occurring earlier than No strokes. Conclusion Rower judgements about successful strokes was linked to achieving a quicker time to positive acceleration, and may be of the most value in achieving a higher average boat velocity.
Resumo:
On the ALEA Study Tour to China, Beryl Exley and her roomie Kathryn O’Sullivan pondered over their first night dilemma whilst staying at a hotel in Beijing. They read the room service guide (in English) which advised against drinking the tap water and confirming the supply of one bottle of complementary water per guest per day. The room service guide listed ‘special’ bottled water was the equivalent of $AUS7 per bottle. However the dilemma was this: sitting on the shelf above the fridge were three different kinds of water-like bottles. Each had a different label, written mainly in Chinese characters. Not wanting to mistake the bottles, Beryl and Kathryn set about decoding the text of the three bottles in question.
Resumo:
Photovoltaic (PV) panels and electric domestic water heater with storage (DWH) are widely used in households in many countries. However, DWH should be explored as an energy storage mechanism before batteries when households have excess PV energy. Through a residential case study in Queensland, Australia, this paper presents a new optimized design and control solution to reduce water heating costs by utilizing existing DWH energy storage capacity and increasing PV self-consumption for water heating. The solution is produced by evaluating the case study energy profile and numerically maximizing the use of PV for DWH. A conditional probability matrix for different solar insolation and hot water usage days is developed to test the solution. Compared to other tariffs, this solution shows cost reduction from 20.8% to 63.3% This new solution could encourage solar households move to a more economical and carbon neutral water heating method.
Resumo:
Coal seam gas (CSG) is a growing industry in Queensland and represents a potential major employer and deliverer of financial prosperity for years to come. CSG is a natural gas composed primarily of methane and is found trapped underground in coal beds. During the gas extraction process, significant volumes of associated water are also produced. This associated water could be a valuable resource, however, the associated water comprises of various salt constituents that make it problematic for beneficial use. Consequently, there is a need to implement various water treatment strategies to purify the associated water to comply with Queensland’s strict guidelines and to mitigate environmental risks. The resultant brine is also of importance as ultimately it also has to be dealt with in an economical manner. In some ways it can be considered that the CSG industry does not face a water problem, as this has inherent value to society, but rather has a “salt issue” to solve. This study analyzes the options involved in both the water treatment and salt recovery processes. A brief overview of the constituents present in Queensland CS water is made to illustrate the challenges involved and a range of treatment technologies discussed. Water treatment technologies examined include clarification (ballasted flocculation, dissolved air flotation, electrocoagulation), membrane filtration (ultrafiltration), ion exchange softening and desalination (ion exchange, reverse osmosis desalination and capacitance deionization). In terms of brine management we highlighted reinjection, brine concentration ponds, membrane techniques (membrane distillation, forward osmosis), thermal methods, electrodialysis, electrodialysis reversal, bipolar membrane electrodialysis, wind assisted intensive evaporation, membrane crystallization, eutectic freeze crystallization and vapor compression. As an entirety this investigation is designed to be an important tool in developing CS water treatment management strategies for effective management in Queensland and worldwide.
Resumo:
In this study, a bench scale forward osmosis (FO) process was operated using two commonly available FO membranes in different orientations in order to examine the removal of foulants in the coal seam gas (CSG) associated water, the water flux and fouling behaviours of the process were also investigated. After 48 h of fouling simulation experiment, the water flux declined by approximately 55 and 35% of its initial level in the TFC-PRO and CTA-PRO modes (support layer facing the feed), respectively, while the flux decline in the TFC-FO and CTA-FO modes (active layer facing the feed) was insignificant. The flux decline in PRO modes was caused by the compounding effects of internal concentration polarisation and membrane fouling. However, the declined flux was completely recovered to its initial level following the hydraulic cleaning using deionised water. Dissolved organic carbon (DOC), adenosine tri-phosphate (ATP) and major inorganic scalants (Ca, Mg and silica) in the CSG feed were effectively removed by using the FO process. The results of this study suggest that the FO process shows promising potential to be employed as an effective pre-treatment for membrane purification of CSG associated water.