620 resultados para Web Mining
Resumo:
Australia’s mining boom Global demand for minerals and energy products has fuelled Australia’s recent resources boom and has led to the rapid expansion of mining projects not only in remote locations but increasingly in settled traditionally agricultural rural areas. A fundamental shift has also occurred in the provisioning of skilled and semi-skilled workers. The huge acceleration in industry demand for labour has been accompanied by the entrenchment of workforce arrangements largely dependent on fly-in, fly-out (FIFO) and drive–in, drive–out (DIDO) non-resident workers (NRWs). While NRWs are working away from their homes, they are usually accommodated in work camps or ‘villages’ for the duration of their work cycle which are normally comprised of many consecutive days of 12-hour day- and night-shifts. The health effects of this form of employment and the accompanying lifestyle is increasingly becoming contentious. Impacts on personal wellness, wellbeing and quality of life essentially remain under-researched and thus misunderstood. Sodexo in Australia Sodexo began operations in Australia in 1982, and has since become a leader in providing Quality of Life (QOL) services to businesses across the country. The 6,000 Australian employees are part of a global Sodexo team of 413,000 people. Sodexo in Australia designs, delivers and manages on-site their QOL services at 320 diverse site locations, including remote sites. Sodexo operates in a range of sectors, including the mining industry. Service plans are tailored to suit the individual needs of organisations. Sodexo Remote Sites has previously conducted unpublished research among mining workers in Australia. The results highlighted needs and expectations of Australian mining workers. Main insights about workers’ requirements were directed towards: • contacts with closest; • warm rest time around proper and varied meals; • additional services to help them better enjoy their life onsite and/or make the most of it; • organise their transportation; • promote community living; and • finding balance between professional and personal life. The brief for this current research is aimed at building upon this knowledge. Research brief Expectations for quality of life and wellness and wellbeing services are increasing dramatically. It's getting costlier and more difficult to retain valuable employees. This is particularly the case in the Australian mining sector. Given the level of interest in ensuring healthy workplaces in Australia, Sodexo has commissioned QUT to conduct a literature review. The objectives as specified by Sodexo are: Objective 1: To define the concepts of wellness and wellbeing and quality of life in Australia Objective 2: To examine how wellness and wellbeing are developed within organisations in Australia and how they impact on employee and organizational performance. More specifically, to review the literature that could be sourced about: • challenges of the mining environment; • the mining lifestyle – implications for health, wellness and daily life; • personal health and wellness of Australian mining workers; • factors affecting health in mines and perceived support for health and wellness; and • the impact of employer investment in health on perceptions and behaviour of employees. Objective 3: To determine what impact employee wellness and well-being has on the performance of mining workers. More specifically, to review the literature that could be sourced about: • impact of obesity, alcohol, tobacco use on companies; and • links between employee engagement and satisfaction and company productivity. Accordingly this review has attempted to ascertain what factors an organisation should focus on in order to reduce absenteeism and turnover and increase commitment, satisfaction, safety and productivity, with specific reference to the mining industry in Australia. The structure of the report aligns with the stated objectives in that each of the first three parts address an objective. Part IV summarises prominent issues that have arisen and offers some concluding observations and comments.
Resumo:
Business process analysis and process mining, particularly within the health care domain, remain under-utilised. Applied research that employs such techniques to routinely collected, health care data enables stakeholders to empirically investigate care as it is delivered by different health providers. However, cross-organisational mining and the comparative analysis of processes present a set of unique challenges in terms of ensuring population and activity comparability, visualising the mined models and interpreting the results. Without addressing these issues, health providers will find it difficult to use process mining insights, and the potential benefits of evidence-based process improvement within health will remain unrealised. In this paper, we present a brief introduction on the nature of health care processes; a review of the process mining in health literature; and a case study conducted to explore and learn how health care data, and cross-organisational comparisons with process mining techniques may be approached. The case study applies process mining techniques to administrative and clinical data for patients who present with chest pain symptoms at one of four public hospitals in South Australia. We demonstrate an approach that provides detailed insights into clinical (quality of patient health) and fiscal (hospital budget) pressures in health care practice. We conclude by discussing the key lessons learned from our experience in conducting business process analysis and process mining based on the data from four different hospitals.
Resumo:
This is a practice-led project consisting of a Young Adult novel, Open Cut, and an exegesis, 'I Wouldn't Say That': Finding a Young Adult, Female Voice in a Queensland Mining Town. The thesis investigates the use of first person narration in order to create an immediate engaging, realist Young Adult Fiction. The research design is bound by a feminist interpretative paradigm. The methodology employed is practice-led, auto-ethnography, and participant observation. Particular characteristics of first person narration used in Australian Young Adult Fiction are identified in an analysis of Dust, by Christine Bongers, and Jasper Jones, by Craig Silvey. The exegesis also contains a reflection on the researcher's creative work, and the process used to draft, edit, plot and construct the novel. The research contributes to knowledge in the field of Young Adult Literature because it offers a graphic portrayal of an Australian mining town that has not been heard before.
Resumo:
The rapid development of the World Wide Web has created massive information leading to the information overload problem. Under this circumstance, personalization techniques have been brought out to help users in finding content which meet their personalized interests or needs out of massively increasing information. User profiling techniques have performed the core role in this research. Traditionally, most user profiling techniques create user representations in a static way. However, changes of user interests may occur with time in real world applications. In this research we develop algorithms for mining user interests by integrating time decay mechanisms into topic-based user interest profiling. Time forgetting functions will be integrated into the calculation of topic interest measurements on in-depth level. The experimental study shows that, considering temporal effects of user interests by integrating time forgetting mechanisms shows better performance of recommendation.
Resumo:
Different reputation models are used in the web in order to generate reputation values for products using uses' review data. Most of the current reputation models use review ratings and neglect users' textual reviews, because it is more difficult to process. However, we argue that the overall reputation score for an item does not reflect the actual reputation for all of its features. And that's why the use of users' textual reviews is necessary. In our work we introduce a new reputation model that defines a new aggregation method for users' extracted opinions about products' features from users' text. Our model uses features ontology in order to define general features and sub-features of a product. It also reflects the frequencies of positive and negative opinions. We provide a case study to show how our results compare with other reputation models.
Resumo:
Textual document set has become an important and rapidly growing information source in the web. Text classification is one of the crucial technologies for information organisation and management. Text classification has become more and more important and attracted wide attention of researchers from different research fields. In this paper, many feature selection methods, the implement algorithms and applications of text classification are introduced firstly. However, because there are much noise in the knowledge extracted by current data-mining techniques for text classification, it leads to much uncertainty in the process of text classification which is produced from both the knowledge extraction and knowledge usage, therefore, more innovative techniques and methods are needed to improve the performance of text classification. It has been a critical step with great challenge to further improve the process of knowledge extraction and effectively utilization of the extracted knowledge. Rough Set decision making approach is proposed to use Rough Set decision techniques to more precisely classify the textual documents which are difficult to separate by the classic text classification methods. The purpose of this paper is to give an overview of existing text classification technologies, to demonstrate the Rough Set concepts and the decision making approach based on Rough Set theory for building more reliable and effective text classification framework with higher precision, to set up an innovative evaluation metric named CEI which is very effective for the performance assessment of the similar research, and to propose a promising research direction for addressing the challenging problems in text classification, text mining and other relative fields.
Resumo:
In recent years, the Web 2.0 has provided considerable facilities for people to create, share and exchange information and ideas. Upon this, the user generated content, such as reviews, has exploded. Such data provide a rich source to exploit in order to identify the information associated with specific reviewed items. Opinion mining has been widely used to identify the significant features of items (e.g., cameras) based upon user reviews. Feature extraction is the most critical step to identify useful information from texts. Most existing approaches only find individual features about a product without revealing the structural relationships between the features which usually exist. In this paper, we propose an approach to extract features and feature relationships, represented as a tree structure called feature taxonomy, based on frequent patterns and associations between patterns derived from user reviews. The generated feature taxonomy profiles the product at multiple levels and provides more detailed information about the product. Our experiment results based on some popularly used review datasets show that our proposed approach is able to capture the product features and relations effectively.
Resumo:
Facial expression recognition (FER) systems must ultimately work on real data in uncontrolled environments although most research studies have been conducted on lab-based data with posed or evoked facial expressions obtained in pre-set laboratory environments. It is very difficult to obtain data in real-world situations because privacy laws prevent unauthorized capture and use of video from events such as funerals, birthday parties, marriages etc. It is a challenge to acquire such data on a scale large enough for benchmarking algorithms. Although video obtained from TV or movies or postings on the World Wide Web may also contain ‘acted’ emotions and facial expressions, they may be more ‘realistic’ than lab-based data currently used by most researchers. Or is it? One way of testing this is to compare feature distributions and FER performance. This paper describes a database that has been collected from television broadcasts and the World Wide Web containing a range of environmental and facial variations expected in real conditions and uses it to answer this question. A fully automatic system that uses a fusion based approach for FER on such data is introduced for performance evaluation. Performance improvements arising from the fusion of point-based texture and geometry features, and the robustness to image scale variations are experimentally evaluated on this image and video dataset. Differences in FER performance between lab-based and realistic data, between different feature sets, and between different train-test data splits are investigated.
Resumo:
In this paper, we present WebPut, a prototype system that adopts a novel web-based approach to the data imputation problem. Towards this, Webput utilizes the available information in an incomplete database in conjunction with the data consistency principle. Moreover, WebPut extends effective Information Extraction (IE) methods for the purpose of formulating web search queries that are capable of effectively retrieving missing values with high accuracy. WebPut employs a confidence-based scheme that efficiently leverages our suite of data imputation queries to automatically select the most effective imputation query for each missing value. A greedy iterative algorithm is proposed to schedule the imputation order of the different missing values in a database, and in turn the issuing of their corresponding imputation queries, for improving the accuracy and efficiency of WebPut. Moreover, several optimization techniques are also proposed to reduce the cost of estimating the confidence of imputation queries at both the tuple-level and the database-level. Experiments based on several real-world data collections demonstrate not only the effectiveness of WebPut compared to existing approaches, but also the efficiency of our proposed algorithms and optimization techniques.
Resumo:
Topic modelling has been widely used in the fields of information retrieval, text mining, machine learning, etc. In this paper, we propose a novel model, Pattern Enhanced Topic Model (PETM), which makes improvements to topic modelling by semantically representing topics with discriminative patterns, and also makes innovative contributions to information filtering by utilising the proposed PETM to determine document relevance based on topics distribution and maximum matched patterns proposed in this paper. Extensive experiments are conducted to evaluate the effectiveness of PETM by using the TREC data collection Reuters Corpus Volume 1. The results show that the proposed model significantly outperforms both state-of-the-art term-based models and pattern-based models.
Resumo:
Process mining has developed into a popular research discipline and nowadays its associated techniques are widely applied in practice. What is currently ill-understood is how the success of a process mining project can be measured and what the antecedent factors of process mining success are. We consider an improved, grounded understanding of these aspects of value to better manage the effectiveness and efficiency of process mining projects in practice. As such, we advance a model, tailored to the characteristics of process mining projects, which identifies and relates success factors and measures. We draw inspiration from the literature from related fields for the construction of a theoretical, a priori model. That model has been validated and re-specified on the basis of a multiple case study, which involved four industrial process mining projects. The unique contribution of this paper is that it presents the first set of success factors and measures on the basis of an analysis of real process mining projects. The presented model can also serve as a basis for further extension and refinement using insights from additional analyses.
Resumo:
Children accessing and using internet-connected technology is a relatively recent phenomenon, and rapidly having an impact on their experiences and activities in homes and early childhood classrooms. Technology refers to devices such as computers, smart phones and tablets - many capable of being connected to the internet - and the products, such as websites, games, and interactive stories (Plowman and McPake, 2013). These activities can be played, created, watched, listened to and read, and incorporated into traditional everyday activities. This article provides suggestions for strategies for teachers to consider when incorporating technology into early childhood education.
Resumo:
This project investigated 1) Australian web designers’ cultural perceptions towards Australian Indigenous users and 2) Australian Indigenous cultural features in terms of user interface design. In doing so, it reviews the literature of cross-cultural user interface design by focusing on feasible models and arguments to articulate and integrate Australian Indigenous Internet users’ cultural needs of web user interface. The online survey results collected from 101 Indigenous users and 126 Web designers showed a distinctive difference between them on the integration of Indigenous users' cultural in Web sites. The interview data collected from 14 Indigenous users and 14 web designers suggested practical approaches to the design implications of Indigenous culture.
Resumo:
This paper uses innovative content analysis techniques to map how the death of Oscar Pistorius' girlfriend, Reeva Steenkamp, was framed on Twitter conversations. Around 1.5 million posts from a two-week timeframe are analyzed with a combination of syntactic and semantic methods. This analysis is grounded in the frame analysis perspective and is different than sentiment analysis. Instead of looking for explicit evaluations, such as “he is guilty” or “he is innocent”, we showcase through the results how opinions can be identified by complex articulations of more implicit symbolic devices such as examples and metaphors repeatedly mentioned. Different frames are adopted by users as more information about the case is revealed: from a more episodic one, highly used in the very beginning, to more systemic approaches, highlighting the association of the event with urban violence, gun control issues, and violence against women. A detailed timeline of the discussions is provided.
Resumo:
This paper addresses contemporary neoliberal mobilisations of community undertaken by private corporations. It does so by examining the ways in which the mining industry, empowered through the legitimising framework of corporate social responsibility, is increasingly and profoundly involved in shaping the meaning, practice, and experience of ‘local community’. We draw on a substantial Australian case study, consisting of interviews and document analysis, as a means to examine ‘community-engagement’ practices undertaken by BHP Billiton’s Ravensthorpe Nickel Operation in the Shire of Ravensthorpe in rural Australia. This engagement, we argue, as a process of deepening neoliberalisation simultaneously defines and transforms local community according to the logic of global capital. As such, this study has implications for critical understandings of the intersections among corporate social responsibility, neoliberalisation, community, and capital.