57 resultados para trapping depth
Resumo:
Stromatolites consist primarily of trapped and bound ambient sediment and/or authigenic mineral precipitates, but discrimination of the two constituents is difficult where stromatolites have a fine texture. We used laser ablation-inductively coupled plasma-mass spectrometry to measure trace element (rare earth element – REE, Y and Th) concentrations in both stromatolites (domical and branched) and closely associated particulate carbonate sediment in interspaces (spaces between columns or branches) from bioherms within the Neoproterozoic Bitter Springs Formation, central Australia. Our high resolution sampling allows discrimination of shale-normalised REE patterns between carbonate in stromatolites and immediately adjacent, fine-grained ambient particulate carbonate sediment from interspaces. Whereas all samples show similar negative La and Ce anomalies, positive Gd anomalies and chondritic Y/Ho ratios, the stromatolites and non-stromatolite sediment are distinguishable on the basis of consistently elevated light REEs (LREEs) in the stromatolitic laminae and relatively depleted LREEs in the particulate sediment samples. Additionally, concentrations of the lithophile element Th are higher in ambient sediment samples than in stromatolites, consistent with accumulation of some fine siliciclastic detrital material in the ambient sediment but a near absence in the stromatolites. These findings are consistent with the stromatolites consisting dominantly of in situ carbonate precipitates rather than trapped and bound ambient sediment. Hence, high resolution trace element (REE + Y, Th) geochemistry can discriminate fine-grained carbonates in these stromatolites from coeval non-stromatolitic carbonate sediment and demonstrates that the sampled stromatolites formed primarily from in situ precipitation, presumably within microbial mats/biofilms, rather than by trapping and binding of ambient sediment. Identification of the source of fine carbonate in stromatolites is significant, because if it is not too heavily contaminated by trapped ambient sediment, it may contain geochemical biosignatures and/or direct evidence of the local water chemistry in which the precipitates formed.
Resumo:
Articular cartilage defects are common after joint injuries. When left untreated, the biomechanical protective function of cartilage is gradually lost, making the joint more susceptible to further damage, causing progressive loss of joint function and eventually osteoarthritis (OA). In the process of translating promising tissue-engineering cartilage repair approaches from bench to bedside, pre-clinical animal models including mice, rabbits, goats, and horses, are widely used. The equine species is becoming an increasingly popular model for the in vivo evaluation of regenerative orthopaedic approaches. As there is also an increasing body of evidence suggesting that successful lasting tissue reconstruction requires an implant that mimics natural tissue organization, it is imperative that depth-dependent characteristics of equine osteochondral tissue are known, to assess to what extent they resemble those in humans. Therefore, osteochondral cores (4-8 mm) were obtained from the medial and lateral femoral condyles of equine and human donors. Cores were processed for histology and for biochemical quantification of DNA, glycosaminoglycan (GAG) and collagen content. Equine and human osteochondral tissues possess similar geometrical (thickness) and organizational (GAG, collagen and DNA distribution with depth) features. These comparable trends further underscore the validity of the equine model for the evaluation of regenerative approaches for articular cartilage.
Resumo:
Background. Governments face a significant challenge to ensure that community environments meet the mobility needs of an ageing population. Therefore, it is critical to investigate the effect of suburban environments on the choice of transportation and its relation to participation and active ageing. Objective. This research explores if and how suburban environments impact older people’s mobility and their use of different modes of transport. Methods. Data derived from GPS tracking, travel diaries, brief questionnaires, and semistructured interviews were gathered from thirteen people aged from 56 to 87 years, living in low-density suburban environments in Brisbane, Australia. Results. The suburban environment influenced the choice of transportation and out-of-home mobility. Both walkability and public transportation (access and usability) impact older people’s transportation choices. Impracticality of active and public transportation within suburban environments creates car dependency in older age. Conclusion. Suburban environments often create barriers to mobility, which impedes older people’s engagement in their wider community and ability to actively age in place. Further research is needed to develop approaches towards age-friendly suburban environments which will encourage older people to remain active and engaged in older age.
Resumo:
In general optical systems, the range of distances over which the detector cannot detect any change in focus is called the depth-of-field. This may be specified by movement of the object or image planes, with the former being referred to as depth-of-field and the latter as depth-of-focus (DOF). Either term can be used in vision science, where we refer to changes in vergence which have the same value in both object and image space.
Resumo:
Objective: To determine solar load-bearing structures in the feet of feral horses and investigate morphological characteristics of the sole in feral horses and domestic Thoroughbreds. Sample: Forelimbs from cadavers of 70 feral horses and 20 domestic Thoroughbreds in Australia. Procedures: Left forefeet were obtained from 3 feral horse populations from habitats of soft substrate (SS [n = 10 horses]), hard substrate (HS [10]), and a combination of SS and HS (10) and loaded in vitro. Pressure distribution was measured with a pressure plate. Sole depth was measured at 12 points across the solar plane in feet obtained from feral horses from SS (n = 20 horses) and HS (20) habitats and domestic Thoroughbreds (20). Results: Feet of feral horses from HS habitats loaded the periphery of the sole and hoof wall on a flat surface. Feral horses from HS or SS habitats had greater mean sole depth than did domestic Thoroughbreds. Sole depth was greatest peripherally and was correlated with the loading pattern. Conclusions and Clinical Relevance: The peripheral aspect of the sole in the feet of feral horses had a load-bearing function. Because of the robust nature of the tissue architecture, the hoof capsule of feral horses may be less flexible than that of typical domestic horses. The application of narrow-web horseshoes may not take full advantage of the load-bearing and force-dissipating properties of the peripheral aspect of the sole. Further studies are required to understand the effects of biomechanical stimulation on the adaptive responses of equine feet.
Resumo:
This study presents a segmentation pipeline that fuses colour and depth information to automatically separate objects of interest in video sequences captured from a quadcopter. Many approaches assume that cameras are static with known position, a condition which cannot be preserved in most outdoor robotic applications. In this study, the authors compute depth information and camera positions from a monocular video sequence using structure from motion and use this information as an additional cue to colour for accurate segmentation. The authors model the problem similarly to standard segmentation routines as a Markov random field and perform the segmentation using graph cuts optimisation. Manual intervention is minimised and is only required to determine pixel seeds in the first frame which are then automatically reprojected into the remaining frames of the sequence. The authors also describe an automated method to adjust the relative weights for colour and depth according to their discriminative properties in each frame. Experimental results are presented for two video sequences captured using a quadcopter. The quality of the segmentation is compared to a ground truth and other state-of-the-art methods with consistently accurate results.
Resumo:
Introduction: Nursing in the cardiac catheterisation laboratory (CCL) varies globally in terms of scope and deployment. In the US, all allied staff are cross-trained into all CCL roles. The Australian and New Zealand experience has legislative frameworks that reserves specific functions to nurses. Yet, the nursing role within the CCL is poorly researched and defined. Aim: This study sought to gain deeper understanding of the perceived role of CCL nurses in Australia and New Zealand. Method: A descriptive qualitative study using semi-structured in-depth interviews was used. A cross-sectional sample of 23 senior clinical nurses or nursing managers representing 16 CCLs across Australia and New Zealand was obtained. Data were digitally recorded and transcribed verbatim prior to analysis by three researchers. Results: Five major themes emerged from the data. These themes were: 1. The CCL is a unique environment; 2. CCL nursing is a unique and advanced cardiac nursing discipline; 3. The recruitment attributes for CCL nurses are advanced; 4. Education needs to be standardised; and 5. The evidence to support practice is poor. Discussion: The CCL environment is a dynamic, deeply interdisciplinary setting with CCL nursing seen to be a unique advanced practice role. Yet the time has come for a scope of practice, educational standards, guidelines and competencies was expressed by the participants. Conclusion: Nursing in the CCL is an advanced practice role working within a complex interdisciplinary environment. Further work is required to define the role of CCL nurses together with the evidence-base for their practice.
Resumo:
Camera trapping is a scientific survey technique that involves the placement of heat-and motion-sensing automatic triggered cameras into the ecosystem to record images of animals for the purpose of studying wildlife. As technology continues to advance in sophistication, the use of camera trapping is becoming more widespread and is a crucial tool in the study of, and attempts to preserve, various species of animals, particularly those that are internationally endangered. However, whatever their value as an ecological device, camera traps also create a new risk of incidentally and accidentally capturing images of humans who venture into the area under surveillance. This article examines the current legal position in Australia in relation to such unintended invasions of privacy. It considers the current patchwork of statute and common laws that may provide a remedy in such circumstances. It also discusses the position that may prevail should the recommendations of either the Australian Law Reform Commission and/or New South Wales Law Reform Commission be adopted and a statutory cause of action protecting personal privacy be enacted.
Resumo:
Purpose To examine choroidal thickness (ChT) and its topographical variation across the posterior pole in myopic and non-myopic children. Methods One hundred and four children aged 10-15 years of age (mean age 13.1 ± 1.4 years) had ChT measured using enhanced depth imaging optical coherence tomography (OCT). Forty one children were myopic (mean spherical equivalent -2.4 ± 1.5 D) and 63 non-myopic (mean +0.3 ± 0.3 D). Two series of 6 radial OCT line scans centred on the fovea were assessed for each child. Subfoveal ChT and ChT across a series of parafoveal zones over the central 6mm of the posterior pole were determined through manual image segmentation. Results Subfoveal ChT was significantly thinner in myopes (mean 303 ± 79 µm) compared to non-myopes (mean 359 ± 77 µm) (p<0.0001). Multiple regression analysis revealed both refractive error (r = 0.39, p<0.001) and age (r = 0.21, p = 0.02) were positively associated with subfoveal ChT. ChT also exhibited significant topographical variations, with the choroid being thicker in more central regions. The thinnest choroid was typically observed in nasal (mean 286 ± 77 µm) and inferior-nasal (306 ± 79 µm) locations, and the thickest in superior (346 ± 79 µm) and superior-temporal (341 ± 74 µm) locations. The difference in ChT between myopic and non-myopic children was significantly greater in central foveal regions compared to more peripheral regions (>3 mm diameter) (p<0.001). Conclusions Myopic children have significantly thinner choroids compared to non-myopic children of similar age, particularly in central foveal regions. The magnitude of difference in choroidal thickness associated with myopia appears greater than would be predicted by a simple passive choroidal thinning with axial elongation.
Resumo:
A bridgehead adamantyl peroxyl radical has been prepared and isolated in the gas phase by the reaction of a distonic radical anion with dioxygen in a quadrupole ion-trap mass spectrometer.
Resumo:
The effects of crack depth (a/W) and specimen width W on the fracture toughness and ductile±brittle transition have been investigated using three-point bend specimens. Finite element analysis is employed to obtain the stress-strain fields ahead of the crack tip. The results show that both normalized crack depth (a/W) and specimen width (W) affect the fracture toughness and ductile±brittle fracture transition. The measured crack tip opening displacement decreases and ductile±brittle transition occurs with increasing crack depth (a/W) from 0.1 to 0.2 and 0.3. At a fixed a/W (0.2 or 0.3), all specimens fail by cleavage prior to ductile tearing when specimen width W increases from 25 to 40 and 50 mm. The lower bound fracture toughness is not sensitive to crack depth and specimen width. Finite element analysis shows that the opening stress in the remaining ligament is elevated with increasing crack depth or specimen width due to the increase of in-plane constraint. The average local cleavage stress is dependent on both crack depth and specimen width but its lower bound value is not sensitive to constraint level. No fixed distance can be found from the cleavage initiation site to the crack tip and this distance increases gradually with decreasing inplane constraint.
Resumo:
Charging and trapping of macroparticles in the near-electrode region of fluorocarbon etching plasmas with negative ions is considered. The equilibrium charge and forces on particles are computed as a function of the local position in the plasma presheath and sheath. The ionic composition of the plasma corresponds to the etching experiments in 2.45 GHz surface-wave sustained and 13.56 MHz inductively coupled C4F8+Ar plasmas. It is shown that despite negligible negative ion currents collected by the particles, the negative fluorine ions affect the charging and trapping of particulates through modification of the sheath/presheath structure.
Resumo:
The capability of storing multi-bit information is one of the most important challenges in memory technologies. An ambipolar polymer which intrinsically has the ability to transport electrons and holes as a semiconducting layer provides an opportunity for the charge trapping layer to trap both electrons and holes efficiently. Here, we achieved large memory window and distinct multilevel data storage by utilizing the phenomena of ambipolar charge trapping mechanism. As fabricated flexible memory devices display five well-defined data levels with good endurance and retention properties showing potential application in printed electronics.
Resumo:
Introduction With the ever-increasing global burden of retinal disease, there is an urgent need to vastly improve formulation strategies that enhance posterior eye delivery of therapeutics. Despite intravitreal administration having demonstrated notable superiority over other routes in enhancing retinal drug availability, there still exist various significant physical/biochemical barriers preventing optimal drug delivery into the retina. A further complication lies with an inability to reliably translate laboratory-based retinal models into a clinical setting. Several formulation approaches have recently been evaluated to improve intravitreal therapeutic outcomes, and our aim in this review is to highlight strategies that hold the most promise. Areas covered We discuss the complex barriers faced by the intravitreal route and examine how formulation strategies including implants, nanoparticulate carriers, viral vectors and sonotherapy have been utilized to attain both sustained delivery and enhanced penetration through to the retina. We conclude by highlighting the advances and limitations of current in vitro, ex vivo and in vivo retinal models in use by researchers globally. Expert opinion Various nanoparticle compositions have demonstrated the ability to overcome the retinal barriers successfully; however, their utility is limited to the laboratory setting. Optimization of these formulations and the development of more robust experimental retinal models are necessary to translate success in the laboratory into clinically efficacious outcomes.