556 resultados para student feedback


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Digital tablets have been identified as a tool for enabling blended learning and supporting online teaching and learning. A small scale trial was undertaken to assess the effectiveness of this technology when applied to power engineering education. Critical findings and experiences gained from this trial, including potential benefits, presentation techniques and the resulting student feedback are presented in this paper.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Reframe is changing our approach to the evaluation of courses, units, teaching and student experience at QUT. We are moving away from a single survey tool to a richer, more holistic and customisable approach. This approach will help our academics design and deliver high-quality learning experiences, and review the impact of their teaching practice on student learning. Through it, we will also be able to provide more timely access to specialised support and meet external reporting requirements.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Reframe is changing our approach to the evaluation of courses, units, teaching and student experience at QUT. We are moving away from a single survey tool to a richer, more holistic and customisable approach. These protocols allows academic staff and administrators access to the ways in which the policy is enacted through process.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Reframe is changing our approach to the evaluation of courses, units, teaching and student experience at QUT. This graphic image represents the evaluation framework and its purpose in a single page.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aims To evaluate if a revamped business management course for 4th year undergraduate pharmacy students had achieved the course aims of not only improving pharmacy students’ perceived understanding of pharmacy business management topics but also increasing their confidence in their business management knowledge and skills. Background Student feedback from previous years had indicated that the cohort had struggled to translate theoretical business management concepts learned in the classroom into practice in the workplace. To address this problem the course has been changed to a ‘flipped classroom’ format with face-to-face time focusing on case-based scenarios and interactive classroom discussion with some role plays. Method Both course assessment throughout the semester and a student survey informed the evaluation process. Results After completing the course, students felt they had increased their knowledge of business management concepts but many indicated that they lacked the confidence to undertake basic management functions. Conclusions Further course restructuring is required with a greater focus on skills development.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Introduction A novel realistic 3D virtual reality (VR) application has been developed to allow medical imaging students at Queensland University of Technology to practice radiographic techniques independently outside the usual radiography laboratory. Methods A flexible agile development methodology was used to create the software rapidly and effectively. A 3D gaming environment and realistic models were used to engender presence in the software while tutor-determined gold standards enabled students to compare their performance and learn in a problem-based learning pedagogy. Results Students reported high levels of satisfaction and perceived value and the software enabled up to 40 concurrent users to prepare for clinical practice. Student feedback also indicated that they found 3D to be of limited value in the desktop version compared to the usual 2D approach. A randomised comparison between groups receiving software-based and traditional practice measured performance in a formative role play with real equipment. The results of this work indicated superior performance with the equipment for the VR trained students (P = 0.0366) and confirmed the value of VR for enhancing 3D equipment-based problem-solving skills. Conclusions Students practising projection techniques virtually performed better at role play assessments than students practising in a traditional radiography laboratory only. The application particularly helped with 3D equipment configuration, suggesting that teaching 3D problem solving is an ideal use of such medical equipment simulators. Ongoing development work aims to establish the role of VR software in preparing students for clinical practice with a range of medical imaging equipment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

2014 is the year for embedding the Reframe: QUT’s Evaluation Framework as core business within the University, with the following providing an outline of the Learning and Teaching Unit’s (LTU) planned activities to support this implementation. LTU is continuing its commitment to intensive support and engagement with the academic and teaching focused community within QUT. The Academic Quality and Standards team have extended the existing communication and dissemination activities into a comprehensive communication plan for 2014, with major initiatives defined within this document. It should be noted that these activities are aligned to the discussions from the 2013 Integrated Management of Feedback (IMF) Steering Group and as endorsed by the University Learning and Teaching Committee at their meeting in February, 2014.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Devising authentic assessments for subjects with large enrolments is a challenge. This study describes an electronic role-play assessment for approximately 600 first-year nursing students to learn and apply pathophysiology (bioscience) concepts to nursing practice. Students used Microsoft Office PowerPoint® to prepare electronic role-plays both between a nurse and patient, and between two nurses, thus simulating workplace scenarios. Student feedback demonstrated that respondents found this assessment useful for learning pathophysiology, and for applying pathophysiology to a nursing clinical setting. This electronic presentation circumvented issues associated with a traditional oral presentation such as embarrassment and logistics of scheduling groups, and rated well with students of non-English speaking background. The electronic role-play assessment initiative encouraged students to apply their bioscience knowledge to a clinical setting, and allowed students to conceptualise the importance of bioscience within both the nursing degree and the profession.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Many students enter business degrees without a defined career goal beyond working in the business world and adopt a scattergun approach to employability by accumulating certifications accessed through individual subjects. Yet, space and time limitations commonly prevent extended exposure to rewarding and interesting career subfields within main specialisations. This case study draws on student feedback collected over three years exploring students’ career interest following an elective human resource development subject in the final stage of a human resources major. Project-based curriculum provided students with scaffolded learning while undertaking key multiphase human resource development tasks. Subsequently, students reported human resource development career interest and intent, attributed to more realistic appreciation of human resource development’s activities, scope, and values. The paper makes an important contribution illustrating how curriculum design can transform instrumentalism into logically, emotionally, and intuitively based career engagement. Further, human resource development is a study and career area little mentioned in higher education or careers literature.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aim: In 2013 QUT introduced the Medical Imaging Training Immersive Environment (MITIE) as a virtual reality (VR) platform that allowed students to practice general radiography. The system software has been expanded to now include C-Arm. The aim of this project was to investigate the use of this technology in the pedagogy of undergraduate medical imaging students who have limited to no experience in the use of the C-Arm clinically. Method: The Medical Imaging Training Immersive Environment (MITIE) application provides students with realistic and fully interactive 3D models of C-Arm equipment. As with VR initiatives in other health disciplines (1–2) the software mimics clinical practice as much as possible and uses 3D technology to enhance 3D spatial awareness and realism. The application allows students to set up and expose a virtual patient in a 3D environment as well as creating the resultant “image” for comparison with a gold standard. Automated feedback highlights ways for the student to improve their patient positioning, equipment setup or exposure factors. The students' equipment knowledge was tested using an on line assessment quiz and surveys provided information on the students' pre-clinical confidence scale, with post-clinical data comparisons. Ethical approval for the project was provided by the university ethics panel. Results: This study is currently under way and this paper will present analysis of initial student feedback relating to the perceived value of the application for confidence in a high risk environment (i.e. operating theatre) and related clinical skills development. Further in-depth evaluation is ongoing with full results to be presented. Conclusion: MITIE C-Arm has a development role to play in the pre-clinical skills training for Medical Radiation Science students. It will augment their theoretical understanding prior to their clinical experience. References 1. Bridge P, Appleyard R, Ward J, Phillips R, Beavis A. The development and evaluation of a virtual radiotherapy treatment machine using an immersive visualisation environment. Computers and Education 2007; 49(2): 481–494. 2. Gunn T, Berry C, Bridge P et al. 3D Virtual Radiography: Development and Initial Feedback. Paper presented at the 10th Annual Scientific Meeting of Medical Imaging and Radiation Therapy, March 2013 Hobart, Tasmania.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aims: The Medical Imaging Training Immersive Environment(MITIE) Computed Tomography(CT) system is an innovative virtual reality (VR) platform that allows students to practice a range of CT techniques. The aim of this pilot study was to harvest user feedback about the educational value of teh application and inform future pedagogical development. This presentation explores the use of this technology for skills training. Background: MITIE CT is a 3D VR environment that allows students to position a patient,and set CT technical parameters including IV contrast dose and dose rate. As with VR initiatives in other health disciplines the software mimics clinical practice as much as possible and uses 3D technology to enhance immersion and realism. The software is new and was developed by the Medical Imaging Course Team at a provider University with funding from a Health Workforce Australia 'Simulated Learning Environments' grant Methods: Current third year medical imaging students were provided with additional 1 hour MITIE laboratory tutorials and studnet feedback was collated with regard to educational value and performance. Ethical approval for the project was provided by the university ethics panel Results: This presentation provides qualitative analysis of student perceptions relating to satisfaction, usability and educational value. Students reported high levels of satisfaction and both feedback and assessment results confirmed the application's significance as a pre-clinical tool. There was a clear emerging theme that MITIE could be a useful learning tool that students could access to consolidate their clinical learning, either on campus or during their clinical placement. Conclusion: Student feedback indicates that MITIE CT has a valuable role to play in the clinial skills training for medical imaging students both in the academic and clinical environment. Future work will establish a framework for an appropriate supprting pedagogy that can cross the boundary between the two environments

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Project overview, promotional poster and how to access and use the checklist (student guide)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Asoftware-based environment was developed to provide practical training in medical radiation principles and safety. The Virtual Radiation Laboratory application allowed students to conduct virtual experiments using simulated diagnostic and radiotherapy X-ray generators. The experiments were designed to teach students about the inverse square law, half value layer and radiation protection measures and utilised genuine clinical and experimental data. Evaluation of the application was conducted in order to ascertain the impact of the software on students’ understanding, satisfaction and collaborative learning skills and also to determine potential further improvements to the software and guidelines for its continued use. Feedback was gathered via an anonymous online survey consisting of a mixture of Likert-style questions and short answer open questions. Student feedback was highly positive with 80 % of students reporting increased understanding of radiation protection principles. Furthermore 72 % enjoyed using the software and 87 %of students felt that the project facilitated collaboration within small groups. The main themes arising in the qualitative feedback comments related to efficiency and effectiveness of teaching, safety of environment, collaboration and realism. Staff and students both report gains in efficiency and effectiveness associated with the virtual experiments. In addition students particularly value the visualisation of ‘‘invisible’’ physical principles and increased opportunity for experimentation and collaborative problembased learning. Similar ventures will benefit from adopting an approach that allows for individual experimentation while visualizing challenging concepts.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

How should marketing educators teach today’s technologically savvy college students the latest knowledge as well as relevant soft and hardskills for employment in a world of Web 2.0? The changing environment requires the development of innovative pedagogical approaches to enhance students’ experiential learning. Recent research has focused on the idea of implementing technology and the adoption of educational blogging in the marketing curriculum. This paper outlines a semesterlong marketing blog competition, in which students had to (1) create and maintain a marketing blog and (2) apply web analytics to analyze, manage and improve their blog performance based on key performance indicators. This article offers a detailed discussion of the design and implementation as well as the outcomes based on quantitative and qualitative student feedback.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND OR CONTEXT Laboratories provide the physical spaces for engineering students to connect with theory and have a personal hands-on learning experience. Learning space design and development is well established in many universities however laboratories are often not part of that movement. While active, collaborative and group learning pedagogies are all key words in relation to these new spaces the concepts have always been central to laboratory based learning. The opportunity to build on and strengthen good practice in laboratories is immense. In the 2001 review “Universities in Crisis” many references are made to the decline of laboratories. One such comment in the review was made by Professor Ian Chubb (AVCC), who in 2013, as Chief Scientist for Australia, identifies the national concern about STEM education and presents a strategic plan to address the challenges ahead. What has been achieved and changed in engineering teaching and research laboratories in this time? PURPOSE OR GOAL A large number of universities in Australia and New Zealand own laboratory and other infrastructure designed well for the era they were built but now showing signs of their age, unable to meet the needs of today’s students, limiting the effectiveness of learning outcomes and presenting very low utilisation rates. This paper will present a model for new learning space design that improves student experience and engagement, supporting academic aims and significantly raising the space utilisation rate. APPROACH A new approach in laboratory teaching and research including new management has been adopted by the engineering disciplines at QUT. Flexibility is an underpinning principle along with the modularisation of fixed teaching and learning equipment, high utilisation of spaces and dynamic pedagogical approaches. The revitalised laboratories and workshop facilities are used primarily for the engineering disciplines and increasingly for integrated use across many disciplines in the STEM context. The new approach was built upon a base of an integrated faculty structure from 2005 and realised in 2010 as an associated development with the new Science and Engineering Centre (SEC). Evaluation through student feedback surveys for practical activities, utilisation rate statistics and uptake by academic and technical staff indicate a very positive outcome. DISCUSSION Resulting from this implementation has been increased satisfaction by students, creation of social learning and connecting space and an environment that meets the needs and challenges of active, collaborative and group learning pedagogies. Academic staff are supported, technical operations are efficient and laboratories are effectively utilised. RECOMMENDATIONS/IMPLICATIONS/CONCLUSION Future opportunities for continuous improvement are evident in using the student feedback to rectify faults and improve equipment, environment and process. The model is easily articulated and visible to other interested parties to contribute to sector wide development of learning spaces.