705 resultados para statistical relational learning
Resumo:
This study documents and theorises the consequences of the 2003 Australian Government Reform Package focussed on learning and teaching in Higher Education during the period 2002 to 2008. This is achieved through the perspective of program evaluation and the methodology of illuminative evaluation. The findings suggest that the three national initiatives of that time, Learning and Teaching Performance Fund (LTPF), Australian Learning and Teaching Council (ALTC), and Australian Universities Quality Agency (AUQA), were successful in repositioning learning and teaching as a core activity in universities. However, there were unintended consequences brought about by international policy borrowing, when the short-lived nature of LTPF suggests a legacy of quality compliance rather than one of quality enrichment.
Resumo:
High-Order Co-Clustering (HOCC) methods have attracted high attention in recent years because of their ability to cluster multiple types of objects simultaneously using all available information. During the clustering process, HOCC methods exploit object co-occurrence information, i.e., inter-type relationships amongst different types of objects as well as object affinity information, i.e., intra-type relationships amongst the same types of objects. However, it is difficult to learn accurate intra-type relationships in the presence of noise and outliers. Existing HOCC methods consider the p nearest neighbours based on Euclidean distance for the intra-type relationships, which leads to incomplete and inaccurate intra-type relationships. In this paper, we propose a novel HOCC method that incorporates multiple subspace learning with a heterogeneous manifold ensemble to learn complete and accurate intra-type relationships. Multiple subspace learning reconstructs the similarity between any pair of objects that belong to the same subspace. The heterogeneous manifold ensemble is created based on two-types of intra-type relationships learnt using p-nearest-neighbour graph and multiple subspaces learning. Moreover, in order to make sure the robustness of clustering process, we introduce a sparse error matrix into matrix decomposition and develop a novel iterative algorithm. Empirical experiments show that the proposed method achieves improved results over the state-of-art HOCC methods for FScore and NMI.
Resumo:
Background Value for money (VfM) on collaborative construction projects is dependent on the learning capabilities of the organisations and people involved. Within the context of infrastructure delivery, there is little research about the impact of organisational learning capability on project value. The literature contains a multiplicity of often un-testable definitions about organisational learning abilities. This paper defines learning capability as a dynamic capability that participant organisations purposely develop to add value to collaborative projects. The paper reports on a literature review that proposes a framework that conceptualises learning capability to explore the topic. This work is the first phase of a large-scale national survey funded by the Alliancing Association of Australasia and the Australian Research Council. Methodology Desk-top review of leading journals in the areas of strategic management, strategic alliances and construction management, as well as recent government documents and industry guidelines, was undertaken to synthesise, conceptualise and operationalise the concept of learning capability. The study primarily draws on the theoretical perspectives of the resource-based view of the firm (e.g. Barney 1991; Wernerfelt 1984), absorptive capacity (e.g. Cohen and Levinthal 1990; Zahra and George 2002); and dynamic capabilities (e.g. Helfat et al. 2007; Teece et al. 1997; Winter 2003). Content analysis of the literature was undertaken to identify key learning routines. Content analysis is a commonly used methodology in the social sciences area. It provides rich data through the systematic and objective review of literature (Krippendorff 2004). NVivo 9, a qualitative data analysis software package, was used to assist in this process. Findings and Future Research The review process resulted in a framework for the conceptualisation of learning capability that shows three phases of learning: (1) exploratory learning, (2) transformative learning and (3) exploitative learning. These phases combine both internal and external learning routines to influence project performance outcomes and thus VfM delivered under collaborative contracts. Sitting within these phases are eight categories of learning capability comprising knowledge articulation, identification, acquisition, dissemination, codification, internationalisation, transformation and application. The learning routines sitting within each category will be disaggregated in future research as the basis for measureable items in a large-scale survey study. The survey will examine the extent to which various learning routines influence project outcomes, as well as the relationships between them. This will involve identifying the routines that exist within organisations in the construction industry, their resourcing and rate of renewal, together with the extent of use and perceived value within the organisation. The target population is currently estimated to be around 1,000 professionals with experience in relational contracting in Australia. This future research will build on the learning capability framework to provide data that will assist construction organisations seeking to maximise VfM on construction projects.
Resumo:
Many nations are highlighting the need for a renaissance in the mathematical sciences as essential to the well-being of all citizens (e.g., Australian Academy of Science, 2006; 2010; The National Academies, 2009). Indeed, the first recommendation of The National Academies’ Rising Above the Storm (2007) was to vastly improve K–12 science and mathematics education. The subsequent report, Rising Above the Gathering Storm Two Years Later (2009), highlighted again the need to target mathematics and science from the earliest years of schooling: “It takes years or decades to build the capability to have a society that depends on science and technology . . . You need to generate the scientists and engineers, starting in elementary and middle school” (p. 9). Such pleas reflect the rapidly changing nature of problem solving and reasoning needed in today’s world, beyond the classroom. As The National Academies (2009) reported, “Today the problems are more complex than they were in the 1950s, and more global. They’ll require a new educated workforce, one that is more open, collaborative, and cross-disciplinary” (p. 19). The implications for the problem solving experiences we implement in schools are far-reaching. In this chapter, I consider problem solving and modelling in the primary school, beginning with the need to rethink the experiences we provide in the early years. I argue for a greater awareness of the learning potential of young children and the need to provide stimulating learning environments. I then focus on data modelling as a powerful means of advancing children’s statistical reasoning abilities, which they increasingly need as they navigate their data-drenched world.
Resumo:
Objective To synthesise recent research on the use of machine learning approaches to mining textual injury surveillance data. Design Systematic review. Data sources The electronic databases which were searched included PubMed, Cinahl, Medline, Google Scholar, and Proquest. The bibliography of all relevant articles was examined and associated articles were identified using a snowballing technique. Selection criteria For inclusion, articles were required to meet the following criteria: (a) used a health-related database, (b) focused on injury-related cases, AND used machine learning approaches to analyse textual data. Methods The papers identified through the search were screened resulting in 16 papers selected for review. Articles were reviewed to describe the databases and methodology used, the strength and limitations of different techniques, and quality assurance approaches used. Due to heterogeneity between studies meta-analysis was not performed. Results Occupational injuries were the focus of half of the machine learning studies and the most common methods described were Bayesian probability or Bayesian network based methods to either predict injury categories or extract common injury scenarios. Models were evaluated through either comparison with gold standard data or content expert evaluation or statistical measures of quality. Machine learning was found to provide high precision and accuracy when predicting a small number of categories, was valuable for visualisation of injury patterns and prediction of future outcomes. However, difficulties related to generalizability, source data quality, complexity of models and integration of content and technical knowledge were discussed. Conclusions The use of narrative text for injury surveillance has grown in popularity, complexity and quality over recent years. With advances in data mining techniques, increased capacity for analysis of large databases, and involvement of computer scientists in the injury prevention field, along with more comprehensive use and description of quality assurance methods in text mining approaches, it is likely that we will see a continued growth and advancement in knowledge of text mining in the injury field.
Resumo:
In an ever-changing and globalised world there is a need for higher education to adapt and evolve its models of learning and teaching. The old industrial model has lost traction, and new patterns of creative engagement are required. These new models potentially increase relevancy and better equip students for the future. Although creativity is recognised as an attribute that can contribute much to the development of these pedagogies, and creativity is valued by universities as a graduate capability, some educators understandably struggle to translate this vision into practice. This paper reports on selected survey findings from a mixed methods research project which aimed to shed light on how creativity can be designed for in higher education learning and teaching settings. A social constructivist epistemology underpinned the research and data was gathered using survey and case study methods. Descriptive statistical methods and informed grounded theory were employed for the analysis reported here. The findings confirm that creativity is valued for its contribution to the development of students’ academic work, employment opportunities and life in general; however, tensions arise between individual educator’s creative pedagogical goals and the provision of institutional support for implementation of those objectives. Designing for creativity becomes, paradoxically, a matter of navigating and limiting complexity and uncertainty, while simultaneously designing for those same states or qualities.
Designing informal learning experiences for early career academics using a knowledge ecosystem model
Resumo:
This article presents a ‘knowledge ecosystem’ model of how early career academics experience using information to learn while building their social networks for developmental purposes. Developed using grounded theory methodology, the model offers a way of conceptualising how to empower early career academics through 1) agency (individual and relational) and 2) facilitation of personalised informal learning (design of physical and virtual systems and environments) in spaces where developmental relationships are formed including programs, courses, events, community, home and social media. It is suggested that the knowledge ecosystem model is suitable for use in designing informal learning experiences for early career academics.
Resumo:
Convex potential minimisation is the de facto approach to binary classification. However, Long and Servedio [2008] proved that under symmetric label noise (SLN), minimisation of any convex potential over a linear function class can result in classification performance equivalent to random guessing. This ostensibly shows that convex losses are not SLN-robust. In this paper, we propose a convex, classification-calibrated loss and prove that it is SLN-robust. The loss avoids the Long and Servedio [2008] result by virtue of being negatively unbounded. The loss is a modification of the hinge loss, where one does not clamp at zero; hence, we call it the unhinged loss. We show that the optimal unhinged solution is equivalent to that of a strongly regularised SVM, and is the limiting solution for any convex potential; this implies that strong l2 regularisation makes most standard learners SLN-robust. Experiments confirm the unhinged loss’ SLN-robustness.