119 resultados para corrosion mechanism
Resumo:
Phospholipid (PL) molecules form the main structure of the membrane that prevents the direct contact of opposing articular cartilage layers. In this paper we conceptualise articular cartilage as a giant reverse micelle (GRM) in which the highly hydrated three-dimensional network of phospholipids is electrically charged and able to resist compressive forces during joint movement, and hence loading. Using this hypothetical base, we describe a hydrophilic-hydrophilic (HL-HL) biopair model of joint lubrication by contacting cartilages, whose mechanism is reliant on lamellar cushioning. To demonstrate the viability of our concept, the electrokinetic properties of the membranous layer on the articular surface were determined by measuring via microelectrophoresis, the adsorption of ions H, OH, Na and Cl on phospholipid membrane of liposomes, leading to the calculation of the effective surface charge density. The surface charge density was found to be -0.08 ± 0.002 cm-2 (mean ± S.D.) for phospholipid membranes, in 0.155 M NaCl solution and physiological pH. This value was approximately five times less than that measured in 0.01 M NaCl. The addition of synovial fluid (SF) to the 0.155 M NaCl solution reduced the surface charge density by 30% which was attributed to the binding of synovial fluid macromolecules to the phospholipid membrane. Our experiments show that particles charge and interact strongly with the polar core of RM. We demonstrate that particles can have strong electrostatic interactions when ions and macromolecules are solubilized by reverse micelle (RM). Since ions are solubilized by reverse micelle, the surface entropy influences the change in the charge density of the phospholipid membrane on cartilage surfaces. Reverse micelles stabilize ions maintaining equilibrium, their surface charges contribute to the stability of particles, while providing additional screening for electrostatic processes. © 2008 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Bridges are important infrastructures of all nations and are required for transportation of goods as well as human. A catastrophic failure can result in loss of lives and enormous financial hardship to the nation. Hence, there is an urgent need to monitor our infrastructures to prolong their life span, at the same time catering for heavier and faster moving traffics. Although various kinds of sensors are now available to monitor the health of the structures due to corrosion, they do not provide permanent and long term measurements. This paper investigates the fabrication of Carbon Nanotube (CNT) based composite sensors for structural health monitoring. The CNTs, a key material in nanotechnology has aroused great interest in the research community due to their remarkable mechanical, electrochemical, piezoresistive and other physical properties. Multi-wall CNT (MWCNT)/Nafion composite sensors were fabricated to evaluate their electrical properties when subjected to chemical solutions, to simulate a chemical reaction due to corrosion and real life corrosion experimental tests. The electrical resistance of the sensor electrode was dramatically changed due to corrosion. The novel sensor is expected to effectively detect corrosion in structures based on the measurement of electrical impedances of the CNT composite.
Resumo:
In this paper, we describe a voting mechanism for accurate named entity (NE) translation in English–Chinese question answering (QA). This mechanism involves translations from three different sources: machine translation,online encyclopaedia, and web documents. The translation with the highest number of votes is selected. We evaluated this approach using test collection, topics and assessment results from the NTCIR-8 evaluation forum. This mechanism achieved 95% accuracy in NEs translation and 0.3756 MAP in English–Chinese cross-lingual information retrieval of QA.
Resumo:
The development of new materials for water purification is of universal importance. Among these types of materials are layered double hydroxides (LDHs). Non-ionic materials pose a significant problem as pollutants. The interaction of methyl orange (MO) and acidic scarlet GR (GR) adsorption on hydrocalumite (Ca/Al-LDH-Cl) were studied by X-ray diffraction (XRD), infrared spectroscopy (MIR), scanning electron microscope (SEM) and near-infrared spectroscopy (NIR). The XRD results revealed that the basal spacing of Ca/Al-LDH-MO was expanded to 2.45 nm, and the MO molecules were intercalated with a inter-penetrating bilayer model in the gallery of LDH, with 49o tilting angle. Yet Ca/Al-LDH-GR was kept the same d-value as Ca/Al-LDH-Cl. The NIR spectrum for Ca/Al-LDH-MO showed a prominent band around 5994 cm-1, assigned to the combination result of the N-H stretching vibrations, which was considered as a mark to assess MO- ion intercalation into Ca/Al-LDH-Cl interlayers. From SEM images, the particle morphology of Ca/Al-LDH-MO mainly changed to irregular platelets, with a “honey-comb” like structure. Yet the Ca/Al-LDH-GR maintained regular hexagons platelets, which was similar to that of Ca/Al-LDH-Cl. All results indicated that MO- ion was intercalated into Ca/Al-LDH-Cl interlayers, and acidic scarlet GR was only adsorped upon Ca/Al-LDH-Cl surfaces.
Resumo:
A magneto-rheological (MR) fluid damper is a semi-active control device that has recently begun to receive more attention in the vibration control community. However, the inherent nonlinear nature of the MR fluid damper makes it challenging to use this device to achieve high damping control system performance. Therefore the development of an accurate modeling method for a MR fluid damper is necessary to take advantage of its unique characteristics. Our goal was to develop an alternative method for modeling a MR fluid damper by using a self tuning fuzzy (STF) method based on neural technique. The behavior of the researched damper is directly estimated through a fuzzy mapping system. In order to improve the accuracy of the STF model, a back propagation and a gradient descent method are used to train online the fuzzy parameters to minimize the model error function. A series of simulations had been done to validate the effectiveness of the suggested modeling method when compared with the data measured from experiments on a test rig with a researched MR fluid damper. Finally, modeling results show that the proposed STF interference system trained online by using neural technique could describe well the behavior of the MR fluid damper without need of calculation time for generating the model parameters.
Resumo:
Hydrocalumite (CaAl-LDH-Cl) were synthesized through a rehydration method involving a freshly prepared tricalcium aluminate (C3A) with CaCl2 solution. To understand the intercalation behaviour of sodium dodecylsulfate (SDS) with CaAl-LDH-Cl, X-ray diffraction (XRD), Fourier transform infrared (FTIR), scanning electron microscopy (SEM), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), inductively coupled plasma-atomic emission spectrometer (ICP) and elemental analysis have been undertaken. The sorption isotherms with SDS reveal that the maximum sorption amount of SDS by CaAl-LDH-Cl could reach 3.67 mmol•g-1. The results revealed that CaAl-LDH-Cl holds a self-dissolution property, about 20-30% of which is dissolved. And the dissolved Ca2+, Al3+ ions are combined with SDS to form CaAl-SDS or Ca-SDS precipitation. It has been highlighted that the composition of resulting products is strongly dependent upon the SDS concentration. With increasing SDS concentrations, the main resulting product changes from CaAl-SDS to Ca-SDS, and the value of interlayer spacing increased to 3.27 nm.
Resumo:
Regulatory commentators have identified the need for more responsive regulation to allow enforcement agencies to respond to different types and degrees of non-compliance. One tool considered to support responsive enforcement is the Enforceable Undertaking (EU). EUs are used extensively by Australian regulators in decisions that forego litigation in exchange for offenders promising to (amongst other things) correct behaviour and comply in the future. This arguably allows regulatory agencies greater flexibility in how they obtain compliance with regulations. EUs became an additional enforcement tool for the Fair Work Ombudsman (FWO) under the Fair Work Act 2009. This paper is a preliminary exploration of the comparative use of EUs by the Australian Competition and Consumer Commission and the FWO to assess their effectiveness for the minimum labour standards' environment.
Resumo:
As part of the Australian Government’s Clean Energy Plan, the Government has attempted to harness the legal innovation of the tradeable emissions unit, within a capped carbon trading system, to reduce greenhouse gas emissions. Such an approach promises to send a price signal to the market which will influence emitting behaviours and reduce our emissions in a cost-effective manner. However, if the carbon trading scheme is to successfully achieve cost-effective emissions reductions then the carbon market must be supported by an appropriate legal framework. This paper will consider the key features of the Australian Carbon Pricing Mechanism, including the Carbon Farming Initiative, and critique whether it has all the hallmarks of an effective legal framework to reduce Australia’s net greenhouse gas emissions. The likely future of the trading scheme, following the 2013 elections, will also be addressed.
Resumo:
In the recent past, there are some social issues when personal sensitive data in medical database were exposed. The personal sensitive data should be protected and access must be accounted for. Protecting the sensitive information is possible by encrypting such information. The challenge is querying the encrypted information when making the decision. Encrypted query is practically somewhat tedious task. So we present the more effective method using bucket index and bloom filter technology. We find that our proposed method shows low memory and fast efficiency comparatively. Simulation approaches on data encryption techniques to improve health care decision making processes are presented in this paper as a case scenario.
Resumo:
Evidence for a two-metal ion mechanism for cleavage of the HH16 hammerhead ribozyme is provided by monitoring the rate of cleavage of the RNA substrate as a function of La3+ concentration in the presence of a constant concentration of Mg2+. We show that a bell-shaped curve of cleavage activation is obtained as La3+ is added in micromolar concentrations in the presence of 8 mM Mg2+, with a maximal rate of cleavage being attained in the presence of 3 microM La3+. These results show that two-metal ion binding sites on the ribozyme regulate the rate of the cleavage reaction and, on the basis of earlier estimates of the Kd values for Mg2+ of 3.5 mM and > 50 mM, that these sites bind La3+ with estimated Kd values of 0.9 and > 37.5 microM, respectively. Furthermore, given the very different effects of these metal ions at the two binding sites, with displacement of Mg2+ by La3+ at the stronger (relative to Mg2+) binding site activating catalysis and displacement of Mg2+ by La3+ at the weaker (relative to Mg2+) (relative to Mg2+) binding site inhibiting catalysis, we show that the metal ions at these two sites play very different roles. We argue that the metal ion at binding site 1 coordinates the attacking 2'-oxygen species in the reaction and lowers the pKa of the attached proton, thereby increasing the concentration of the attacking alkoxide nucleophile in an equilibrium process. In contrast, the role of the metal ion at binding site 2 is to catalyze the reaction by absorbing the negative charge that accumulates at the leaving 5'-oxygen in the transition state. We suggest structural reasons why the Mg(2+)-La3+ ion combination is particularly suited to demonstrating these different roles of the two-metal ions in the ribozyme cleavage reaction.
Resumo:
Significant cleavage by hammerhead ribozymes requires activation by divalent metal ions. Several models have been proposed to account for the influence of metal ions on hammerhead activity. A number of recent papers have presented data that have been interpreted as supporting a one-metal-hydroxide-ion mechanism. In addition, a solvent deuterium isotope effect has been taken as evidence against a proton transfer in the rate-limiting step of the cleavage reaction. We propose that these data are more easily explained by a two-metal-ion mechanism that does not involve a metal hydroxide, but does involve a proton transfer in the rate-limiting step.
Resumo:
African lovegrass (Eragrostis curvula) is a C4 perennial grass, native to southern Africa, that was accidentally introduced into Australia in the late 1900s as a contaminant of pasture seed. Its utility for pasture improvement and soil conservation was explored because of its recognised ability to grow in areas of low rainfall and on nutrient-poor sandy loams. Several different agronomic types have now been intentionally introduced across Australia. African lovegrass is now found in all Australian states and territories. It is a declared weed in 33 council areas of New South Wales, a declared pest plant in the ACT and Tasmania and a Regionally Prohibited Weed in 5 out of 11 regions in Victoria. Victoria has also placed it in the very serious threat category (Carr et al. 1992). In Queensland, it has yet to be declared except under local law in the Eidsvold shire (Leigh and Walton, in press).