255 resultados para azeotropic mixture
Resumo:
This article reports an enhanced solvent casting/particulate (salt) leaching (SCPL) method developed for preparing three-dimensional porous polyurethane (PU) scaffolds for cardiac tissue engineering. The solvent for the preparation of the PU scaffolds was a mixture of dimethylformamide (DFM) and tetrahydrofuran (THF). The enhanced method involved the combination of a conventional SCPL method and a step of centrifugation, with the centrifugation being employed to improve the pore uniformity and the pore interconnectivity of scaffolds. Highly porous three-dimensional scaffolds with a well interconnected porous structure could be achieved at the polymer solution concentration of up to 20% by air or vacuum drying to remove the solvent. When the salt particle sizes of 212-295, 295-425, or 425-531 µm and a 15% w/v polymer solution concentration were used, the porosity of the scaffolds was between 83-92% and the compression moduli of the scaffolds were between 13 kPa and 28 kPa. Type I collagen acidic solution was introduced into the pores of a PU scaffold to coat the collagen onto the pore walls throughout the whole PU scaffold. The human aortic endothelial cells (HAECs) cultured in the collagen-coated PU scaffold for 2 weeks were observed by scanning electron microscopy (SEM). It was shown that the enhanced SCPL method and the collagen coating resulted in a spatially uniform distribution of cells throughout the collagen-coated PU scaffold.
Resumo:
Heparan sulfate mimetics, which we have called the PG500 series, have been developed to target the inhibition of both angiogenesis and heparanase activity. This series extends the technology underpinning PI-88, a mixture of highly sulfated oligosaccharides which reached Phase III clinical development for hepatocellular carcinoma. Advances in the chemistry of the PG500 series provide numerous advantages over PI-88. These new compounds are fully sulfated, single entity oligosaccharides attached to a lipophilic moiety, which have been optimized for drug development. The rational design of these compounds has led to vast improvements in potency compared to PI-88, based on in vitro angiogenesis assays and in vivo tumor models. Based on these and other data, PG545 has been selected as the lead clinical candidate for oncology and is currently undergoing formal preclinical development as a novel treatment for advanced cancer.
Resumo:
The United Arab Emirates (UAE) is part of the geographic region known as the Middle East. With a land mass of 82,000 square kilometres, predominantly desert and mountains it is bordered by Oman, Saudi Arabia and the Arabian Gulf. The UAE is strategically located due to its proximity to other oil rich Middle Eastern countries such as Kuwait, Iraq, Iran, and Saudi Arabia. The UAE was formed from a federation of seven emirates (Abu Dhabi, Dubai, Sharjah, Ras Al Khaimah, Ajman, Fujuriah, and Um Al Quain) in December 1971 (Ras Al Khaimah did not join the federation until 1972) (Heard-bey, 2004, 370). Abu Dhabi is the political capital, and the richest emirate; while Dubai is the commercial centre. The majority of the population of the various Emirates live along the coast line as sources of fresh water often heavily influenced the site of different settlements. Unlike some near neighbours (Iran and Iraq) the UAE has not undergone any significant political instability since it was formed in 1971. Due to this early British influences the UAE has had very strong political and economic ties with first Britain, and, more recently, the United States of America (Rugh, 2007). Until the economic production of oil in the early 1960’s the different Emirates had survived on a mixture of primary industry (dates), farming (goats and camels), pearling and subsidies from Britain (Davidson 2005, 3; Hvit, 2007, 565) Along with near neighbours Kuwait, Bahrain, Oman, Qatar and Saudi Arabia, the UAE is part of the Gulf Cooperation Council (GCC), a trading bloc. (Hellyer, 2001, 166-168).
Resumo:
To navigate successfully in a previously unexplored environment, a mobile robot must be able to estimate the spatial relationships of the objects of interest accurately. A Simultaneous Localization and Mapping (SLAM) sys- tem employs its sensors to build incrementally a map of its surroundings and to localize itself in the map simultaneously. The aim of this research project is to develop a SLAM system suitable for self propelled household lawnmowers. The proposed bearing-only SLAM system requires only an omnidirec- tional camera and some inexpensive landmarks. The main advantage of an omnidirectional camera is the panoramic view of all the landmarks in the scene. Placing landmarks in a lawn field to define the working domain is much easier and more flexible than installing the perimeter wire required by existing autonomous lawnmowers. The common approach of existing bearing-only SLAM methods relies on a motion model for predicting the robot’s pose and a sensor model for updating the pose. In the motion model, the error on the estimates of object positions is cumulated due mainly to the wheel slippage. Quantifying accu- rately the uncertainty of object positions is a fundamental requirement. In bearing-only SLAM, the Probability Density Function (PDF) of landmark position should be uniform along the observed bearing. Existing methods that approximate the PDF with a Gaussian estimation do not satisfy this uniformity requirement. This thesis introduces both geometric and proba- bilistic methods to address the above problems. The main novel contribu- tions of this thesis are: 1. A bearing-only SLAM method not requiring odometry. The proposed method relies solely on the sensor model (landmark bearings only) without relying on the motion model (odometry). The uncertainty of the estimated landmark positions depends on the vision error only, instead of the combination of both odometry and vision errors. 2. The transformation of the spatial uncertainty of objects. This thesis introduces a novel method for translating the spatial un- certainty of objects estimated from a moving frame attached to the robot into the global frame attached to the static landmarks in the environment. 3. The characterization of an improved PDF for representing landmark position in bearing-only SLAM. The proposed PDF is expressed in polar coordinates, and the marginal probability on range is constrained to be uniform. Compared to the PDF estimated from a mixture of Gaussians, the PDF developed here has far fewer parameters and can be easily adopted in a probabilistic framework, such as a particle filtering system. The main advantages of our proposed bearing-only SLAM system are its lower production cost and flexibility of use. The proposed system can be adopted in other domestic robots as well, such as vacuum cleaners or robotic toys when terrain is essentially 2D.
Resumo:
Which social perceptions and structures shape coworker reliance and contributions to team products? When people form an intercultural team, they launch a set of working relationships that may be affected by social perceptions and social structures. Social perceptions include beliefs about interpersonal similarity and also expectations of behavior based on professional and national memberships. Social structures include dyadic relationships and the patterns they form. In this study, graduate students from three cohorts were consistently more likely to rely on others with whom they had a professional relationship, while structural equivalence in the professional network had no effect. In only one of the cohorts, people were more likely to rely on others who were professionally similar to themselves. Expectations regarding professional or national groups had no effect on willingness to rely on members of those groups, but expectations regarding teammates' nations positively influenced individual contributions. Willingness to rely on one's teammates did not significantly influence individual contributions to the team. Number of professional ties to teammates increased individual contributions, and number of external ties decreased contributions. Finally, people whose professional networks included a mixture of brokerage and closure (higher ego network variance) made greater contributions to their teams.
Resumo:
Interactions between small molecules with biopolymers e.g. the bovine serum albumin (BSA protein), are important, and significant information is recorded in the UV–vis and fluorescence spectra of their reaction mixtures. The extraction of this information is difficult conventionally and principally because there is significant overlapping of the spectra of the three analytes in the mixture. The interaction of berberine chloride (BC) and the BSA protein provides an interesting example of such complex systems. UV–vis and fluorescence spectra of BC and BSA mixtures were investigated in pH 7.4 Tris–HCl buffer at 37 °C. Two sample series were measured by each technique: (1) [BSA] was kept constant and the [BC] was varied and (2) [BC] was kept constant and the [BSA] was varied. This produced four spectral data matrices, which were combined into one expanded spectral matrix. This was processed by the multivariate curve resolution–alternating least squares method (MCR–ALS). The results produced: (1) the extracted pure BC, BSA and the BC–BSA complex spectra from the measured heavily overlapping composite responses, (2) the concentration profiles of BC, BSA and the BC–BSA complex, which are difficult to obtain by conventional means, and (3) estimates of the number of binding sites of BC.
Groundwater flow model of the Logan river alluvial aquifer system Josephville, South East Queensland
Resumo:
The study focuses on an alluvial plain situated within a large meander of the Logan River at Josephville near Beaudesert which supports a factory that processes gelatine. The plant draws water from on site bores, as well as the Logan River, for its production processes and produces approximately 1.5 ML per day (Douglas Partners, 2004) of waste water containing high levels of dissolved ions. At present a series of treatment ponds are used to aerate the waste water reducing the level of organic matter; the water is then used to irrigate grazing land around the site. Within the study the hydrogeology is investigated, a conceptual groundwater model is produced and a numerical groundwater flow model is developed from this. On the site are several bores that access groundwater, plus a network of monitoring bores. Assessment of drilling logs shows the area is formed from a mixture of poorly sorted Quaternary alluvial sediments with a laterally continuous aquifer comprised of coarse sands and fine gravels that is in contact with the river. This aquifer occurs at a depth of between 11 and 15 metres and is overlain by a heterogeneous mixture of silts, sands and clays. The study investigates the degree of interaction between the river and the groundwater within the fluvially derived sediments for reasons of both environmental monitoring and sustainability of the potential local groundwater resource. A conceptual hydrogeological model of the site proposes two hydrostratigraphic units, a basal aquifer of coarse-grained materials overlain by a thick semi-confining unit of finer materials. From this, a two-layer groundwater flow model and hydraulic conductivity distribution was developed based on bore monitoring and rainfall data using MODFLOW (McDonald and Harbaugh, 1988) and PEST (Doherty, 2004) based on GMS 6.5 software (EMSI, 2008). A second model was also considered with the alluvium represented as a single hydrogeological unit. Both models were calibrated to steady state conditions and sensitivity analyses of the parameters has demonstrated that both models are very stable for changes in the range of ± 10% for all parameters and still reasonably stable for changes up to ± 20% with RMS errors in the model always less that 10%. The preferred two-layer model was found to give the more realistic representation of the site, where water level variations and the numerical modeling showed that the basal layer of coarse sands and fine gravels is hydraulically connected to the river and the upper layer comprising a poorly sorted mixture of silt-rich clays and sands of very low permeability limits infiltration from the surface to the lower layer. The paucity of historical data has limited the numerical modelling to a steady state one based on groundwater levels during a drought period and forecasts for varying hydrological conditions (e.g. short term as well as prolonged dry and wet conditions) cannot reasonably be made from such a model. If future modelling is to be undertaken it is necessary to establish a regular program of groundwater monitoring and maintain a long term database of water levels to enable a transient model to be developed at a later stage. This will require a valid monitoring network to be designed with additional bores required for adequate coverage of the hydrogeological conditions at the Josephville site. Further investigations would also be enhanced by undertaking pump testing to investigate hydrogeological properties in the aquifer.
Resumo:
The problem of impostor dataset selection for GMM-based speaker verification is addressed through the recently proposed data-driven background dataset refinement technique. The SVM-based refinement technique selects from a candidate impostor dataset those examples that are most frequently selected as support vectors when training a set of SVMs on a development corpus. This study demonstrates the versatility of dataset refinement in the task of selecting suitable impostor datasets for use in GMM-based speaker verification. The use of refined Z- and T-norm datasets provided performance gains of 15% in EER in the NIST 2006 SRE over the use of heuristically selected datasets. The refined datasets were shown to generalise well to the unseen data of the NIST 2008 SRE.
Resumo:
Particle emissions, volatility, and the concentration of reactive oxygen species (ROS) were investigated for a pre-Euro I compression ignition engine to study the potential health impacts of employing ethanol fumigation technology. Engine testing was performed in two separate experimental campaigns with most testing performed at intermediate speed with four different load settings and various ethanol substitutions. A scanning mobility particle sizer (SMPS) was used to determine particle size distributions, a volatilization tandem differential mobility analyzer (V-TDMA) was used to explore particle volatility, and a new profluorescent nitroxide probe, BPEAnit, was used to investigate the potential toxicity of particles. The greatest particulate mass reduction was achieved with ethanol fumigation at full load, which contributed to the formation of a nucleation mode. Ethanol fumigation increased the volatility of particles by coating the particles with organic material or by making extra organic material available as an external mixture. In addition, the particle-related ROS concentrations increased with ethanol fumigation and were associated with the formation of a nucleation mode. The smaller particles, the increased volatility, and the increase in potential particle toxicity with ethanol fumigation may provide a substantial barrier for the uptake of fumigation technology using ethanol as a supplementary fuel.
Resumo:
Batch, column and field lysimeter studies have been conducted to evaluate the concept of codisposal of retort water with Rundle (Queensland, Australia) waste shales. The batch studies indicated that degradation of a significant proportion of the total organic load occurs if the mixture is seeded with soil or compost. These results are compared with those from laboratory column studies and from the field lysimeter at the Rundle site. G.c.-m.s. analysis of some of the eluants indicated that significant degradation of the base-neutral fraction occurs even if no soil seed is added, and that degradation of this fraction was higher under anaerobic conditions.
Resumo:
This paper reports on Years 8, 9 and 10 students’ knowledge of percent problem types, use of diagrams, and type of solution strategy. Non- and semi-proficient students displayed the expected inflexible formula approach to solution but proficient students used a flexible mixture of estimation, number sense and trial and error instead of expected schema based methods.
Resumo:
Secondary tasks such as cell phone calls or interaction with automated speech dialog systems (SDSs) increase the driver’s cognitive load as well as the probability of driving errors. This study analyzes speech production variations due to cognitive load and emotional state of drivers in real driving conditions. Speech samples were acquired from 24 female and 17 male subjects (approximately 8.5 h of data) while talking to a co-driver and communicating with two automated call centers, with emotional states (neutral, negative) and the number of necessary SDS query repetitions also labeled. A consistent shift in a number of speech production parameters (pitch, first format center frequency, spectral center of gravity, spectral energy spread, and duration of voiced segments) was observed when comparing SDS interaction against co-driver interaction; further increases were observed when considering negative emotion segments and the number of requested SDS query repetitions. A mel frequency cepstral coefficient based Gaussian mixture classifier trained on 10 male and 10 female sessions provided 91% accuracy in the open test set task of distinguishing co-driver interactions from SDS interactions, suggesting—together with the acoustic analysis—that it is possible to monitor the level of driver distraction directly from their speech.
Resumo:
The main objective of this PhD was to further develop Bayesian spatio-temporal models (specifically the Conditional Autoregressive (CAR) class of models), for the analysis of sparse disease outcomes such as birth defects. The motivation for the thesis arose from problems encountered when analyzing a large birth defect registry in New South Wales. The specific components and related research objectives of the thesis were developed from gaps in the literature on current formulations of the CAR model, and health service planning requirements. Data from a large probabilistically-linked database from 1990 to 2004, consisting of fields from two separate registries: the Birth Defect Registry (BDR) and Midwives Data Collection (MDC) were used in the analyses in this thesis. The main objective was split into smaller goals. The first goal was to determine how the specification of the neighbourhood weight matrix will affect the smoothing properties of the CAR model, and this is the focus of chapter 6. Secondly, I hoped to evaluate the usefulness of incorporating a zero-inflated Poisson (ZIP) component as well as a shared-component model in terms of modeling a sparse outcome, and this is carried out in chapter 7. The third goal was to identify optimal sampling and sample size schemes designed to select individual level data for a hybrid ecological spatial model, and this is done in chapter 8. Finally, I wanted to put together the earlier improvements to the CAR model, and along with demographic projections, provide forecasts for birth defects at the SLA level. Chapter 9 describes how this is done. For the first objective, I examined a series of neighbourhood weight matrices, and showed how smoothing the relative risk estimates according to similarity by an important covariate (i.e. maternal age) helped improve the model’s ability to recover the underlying risk, as compared to the traditional adjacency (specifically the Queen) method of applying weights. Next, to address the sparseness and excess zeros commonly encountered in the analysis of rare outcomes such as birth defects, I compared a few models, including an extension of the usual Poisson model to encompass excess zeros in the data. This was achieved via a mixture model, which also encompassed the shared component model to improve on the estimation of sparse counts through borrowing strength across a shared component (e.g. latent risk factor/s) with the referent outcome (caesarean section was used in this example). Using the Deviance Information Criteria (DIC), I showed how the proposed model performed better than the usual models, but only when both outcomes shared a strong spatial correlation. The next objective involved identifying the optimal sampling and sample size strategy for incorporating individual-level data with areal covariates in a hybrid study design. I performed extensive simulation studies, evaluating thirteen different sampling schemes along with variations in sample size. This was done in the context of an ecological regression model that incorporated spatial correlation in the outcomes, as well as accommodating both individual and areal measures of covariates. Using the Average Mean Squared Error (AMSE), I showed how a simple random sample of 20% of the SLAs, followed by selecting all cases in the SLAs chosen, along with an equal number of controls, provided the lowest AMSE. The final objective involved combining the improved spatio-temporal CAR model with population (i.e. women) forecasts, to provide 30-year annual estimates of birth defects at the Statistical Local Area (SLA) level in New South Wales, Australia. The projections were illustrated using sixteen different SLAs, representing the various areal measures of socio-economic status and remoteness. A sensitivity analysis of the assumptions used in the projection was also undertaken. By the end of the thesis, I will show how challenges in the spatial analysis of rare diseases such as birth defects can be addressed, by specifically formulating the neighbourhood weight matrix to smooth according to a key covariate (i.e. maternal age), incorporating a ZIP component to model excess zeros in outcomes and borrowing strength from a referent outcome (i.e. caesarean counts). An efficient strategy to sample individual-level data and sample size considerations for rare disease will also be presented. Finally, projections in birth defect categories at the SLA level will be made.
Resumo:
Understanding the complexities that are involved in the genetics of multifactorial diseases is still a monumental task. In addition to environmental factors that can influence the risk of disease, there is also a number of other complicating factors. Genetic variants associated with age of disease onset may be different from those variants associated with overall risk of disease, and variants may be located in positions that are not consistent with the traditional protein coding genetic paradigm. Latent Variable Models are well suited for the analysis of genetic data. A latent variable is one that we do not directly observe, but which is believed to exist or is included for computational or analytic convenience in a model. This thesis presents a mixture of methodological developments utilising latent variables, and results from case studies in genetic epidemiology and comparative genomics. Epidemiological studies have identified a number of environmental risk factors for appendicitis, but the disease aetiology of this oft thought useless vestige remains largely a mystery. The effects of smoking on other gastrointestinal disorders are well documented, and in light of this, the thesis investigates the association between smoking and appendicitis through the use of latent variables. By utilising data from a large Australian twin study questionnaire as both cohort and case-control, evidence is found for the association between tobacco smoking and appendicitis. Twin and family studies have also found evidence for the role of heredity in the risk of appendicitis. Results from previous studies are extended here to estimate the heritability of age-at-onset and account for the eect of smoking. This thesis presents a novel approach for performing a genome-wide variance components linkage analysis on transformed residuals from a Cox regression. This method finds evidence for a dierent subset of genes responsible for variation in age at onset than those associated with overall risk of appendicitis. Motivated by increasing evidence of functional activity in regions of the genome once thought of as evolutionary graveyards, this thesis develops a generalisation to the Bayesian multiple changepoint model on aligned DNA sequences for more than two species. This sensitive technique is applied to evaluating the distributions of evolutionary rates, with the finding that they are much more complex than previously apparent. We show strong evidence for at least 9 well-resolved evolutionary rate classes in an alignment of four Drosophila species and at least 7 classes in an alignment of four mammals, including human. A pattern of enrichment and depletion of genic regions in the profiled segments suggests they are functionally significant, and most likely consist of various functional classes. Furthermore, a method of incorporating alignment characteristics representative of function such as GC content and type of mutation into the segmentation model is developed within this thesis. Evidence of fine-structured segmental variation is presented.
Resumo:
Automatic recognition of people is an active field of research with important forensic and security applications. In these applications, it is not always possible for the subject to be in close proximity to the system. Voice represents a human behavioural trait which can be used to recognise people in such situations. Automatic Speaker Verification (ASV) is the process of verifying a persons identity through the analysis of their speech and enables recognition of a subject at a distance over a telephone channel { wired or wireless. A significant amount of research has focussed on the application of Gaussian mixture model (GMM) techniques to speaker verification systems providing state-of-the-art performance. GMM's are a type of generative classifier trained to model the probability distribution of the features used to represent a speaker. Recently introduced to the field of ASV research is the support vector machine (SVM). An SVM is a discriminative classifier requiring examples from both positive and negative classes to train a speaker model. The SVM is based on margin maximisation whereby a hyperplane attempts to separate classes in a high dimensional space. SVMs applied to the task of speaker verification have shown high potential, particularly when used to complement current GMM-based techniques in hybrid systems. This work aims to improve the performance of ASV systems using novel and innovative SVM-based techniques. Research was divided into three main themes: session variability compensation for SVMs; unsupervised model adaptation; and impostor dataset selection. The first theme investigated the differences between the GMM and SVM domains for the modelling of session variability | an aspect crucial for robust speaker verification. Techniques developed to improve the robustness of GMMbased classification were shown to bring about similar benefits to discriminative SVM classification through their integration in the hybrid GMM mean supervector SVM classifier. Further, the domains for the modelling of session variation were contrasted to find a number of common factors, however, the SVM-domain consistently provided marginally better session variation compensation. Minimal complementary information was found between the techniques due to the similarities in how they achieved their objectives. The second theme saw the proposal of a novel model for the purpose of session variation compensation in ASV systems. Continuous progressive model adaptation attempts to improve speaker models by retraining them after exploiting all encountered test utterances during normal use of the system. The introduction of the weight-based factor analysis model provided significant performance improvements of over 60% in an unsupervised scenario. SVM-based classification was then integrated into the progressive system providing further benefits in performance over the GMM counterpart. Analysis demonstrated that SVMs also hold several beneficial characteristics to the task of unsupervised model adaptation prompting further research in the area. In pursuing the final theme, an innovative background dataset selection technique was developed. This technique selects the most appropriate subset of examples from a large and diverse set of candidate impostor observations for use as the SVM background by exploiting the SVM training process. This selection was performed on a per-observation basis so as to overcome the shortcoming of the traditional heuristic-based approach to dataset selection. Results demonstrate the approach to provide performance improvements over both the use of the complete candidate dataset and the best heuristically-selected dataset whilst being only a fraction of the size. The refined dataset was also shown to generalise well to unseen corpora and be highly applicable to the selection of impostor cohorts required in alternate techniques for speaker verification.