41 resultados para Submarine Pipelines
Resumo:
This thesis presents a multi-criteria optimisation study of group replacement schedules for water pipelines, which is a capital-intensive and service critical decision. A new mathematical model was developed, which minimises total replacement costs while maintaining a satisfactory level of services. The research outcomes are expected to enrich the body of knowledge of multi-criteria decision optimisation, where group scheduling is required. The model has the potential to optimise replacement planning for other types of linear asset networks resulting in bottom-line benefits for end users and communities. The results of a real case study show that the new model can effectively reduced the total costs and service interruptions.
Resumo:
For decades Supervisory Control and Data Acquisition (SCADA) and Industrial Control Systems (ICS) have used computers to monitor and control physical processes in many critical industries, including electricity generation, gas pipelines, water distribution, waste treatment, communications and transportation. Increasingly these systems are interconnected with corporate networks via the Internet, making them vulnerable and exposed to the same risks as those experiencing cyber-attacks on a conventional network. Very often SCADA networks services are viewed as a specialty subject, more relevant to engineers than standard IT personnel. Educators from two Australian universities have recognised these cultural issues and highlighted the gap between specialists with SCADA systems engineering skills and the specialists in network security with IT background. This paper describes a learning approach designed to help students to bridge this gap, gain theoretical knowledge of SCADA systems' vulnerabilities to cyber-attacks via experiential learning and acquire practical skills through actively participating in hands-on exercises.
Resumo:
Case note Apache Energy Ltd v Alcoa of Australia Ltd (No 2) [2013] In 2011, headlines were made when Alcoa sued Apache Energy and its partners for $158 million, a loss it claimed was a consequence of Apache Energy failing to adequately inspect and maintain the gas pipelines that supplied the gas used by Alcoa in its business. As the loss was not a consequence of any property damage or injury to Alcoa, the loss is characterised as pure economic loss...
Resumo:
The global demand for food, feed, energy and water poses extraordinary challenges for future generations. It is evident that robust platforms for the exploration of renewable resources are necessary to overcome these challenges. Within the multinational framework MultiBioPro we are developing biorefinery pipelines to maximize the use of plant biomass. More specifically, we use poplar and tobacco tree (Nicotiana glauca) as target crop species for improving saccharification, isoprenoid, long chain hydrocarbon contents, fiber quality, and suberin and lignin contents. The methods used to obtain these outputs include GC-MS, LC-MS and RNA sequencing platforms. The metabolite pipelines are well established tools to generate these types of data, but also have the limitations in that only well characterized metabolites can be used. The deep sequencing will allow us to include all transcripts present during the developmental stages of the tobacco tree leaf, but has to be mapped back to the sequence of Nicotiana tabacum. With these set-ups, we aim at a basic understanding for underlying processes and at establishing an industrial framework to exploit the outcomes. In a more long term perspective, we believe that data generated here will provide means for a sustainable biorefinery process using poplar and tobacco tree as raw material. To date the basal level of metabolites in the samples have been analyzed and the protocols utilized are provided in this article.
Resumo:
Marine sediments around volcanic islands contain an archive of volcaniclastic deposits, which can be used to reconstruct the volcanic history of an area. Such records hold many advantages over often incomplete terrestrial datasets. This includes the potential for precise and continuous dating of intervening sediment packages, which allow a correlatable and temporally-constrained stratigraphic framework to be constructed across multiple marine sediment cores. Here, we discuss a marine record of eruptive and mass-wasting events spanning ~250 ka offshore of Montserrat, using new data from IODP Expedition 340, as well as previously collected cores. By using a combination of high-resolution oxygen isotope stratigraphy, AMS radiocarbon dating, biostratigraphy of foraminifera and calcareous nannofossils and clast componentry, we identify five major events at Soufriere Hills volcano since 250 ka. Lateral correlation of these events across sediment cores collected offshore of the south and south west of Montserrat, have improved our understanding of the timing, extent and associations between events in this area. Correlations reveal that powerful and potentially erosive density-currents travelled at least 33 km offshore, and demonstrate that marine deposits, produced by eruption-fed and mass-wasting events on volcanic islands, are heterogeneous in their spatial distribution. Thus, multiple drilling/coring sites are needed to reconstruct the full chronostratigraphy of volcanic islands. This multidisciplinary study will be vital to interpreting the chaotic records of submarine landslides at other sites drilled during Expedition 340 and provides a framework that can be applied to the stratigraphic analysis of sediments surrounding other volcanic islands.
Resumo:
We present new evidence for sector collapses of the South Soufrière Hills (SSH) edifice, Montserrat during the mid-Pleistocene. High-resolution geophysical data provide evidence for sector collapse, producing an approximately 1 km3 submarine collapse deposit to the south of SSH. Sedimentological and geochemical analyses of submarine deposits sampled by sediment cores suggest that they were formed by large multi-stage flank failures of the subaerial SSH edifice into the sea. This work identifies two distinct geochemical suites within the SSH succession on the basis of trace-element and Pb-isotope compositions. Volcaniclastic turbidites in the cores preserve these chemically heterogeneous rock suites. However, the subaerial chemostratigraphy is reversed within the submarine sediment cores. Sedimentological analysis suggests that the edifice failures produced high-concentration turbidites and that the collapses occurred in multiple stages, with an interval of at least 2 ka between the first and second failure. Detailed field and petrographical observations, coupled with SEM image analysis, shows that the SSH volcanic products preserve a complex record of magmatic activity. This activity consisted of episodic explosive eruptions of andesitic pumice, probably triggered by mafic magmatic pulses and followed by eruptions of poorly vesiculated basaltic scoria, and basaltic lava flows.
Resumo:
The filoviruses, Marburg and Ebola, are non-segmented negative-strand RNA viruses causing severe hemorrhagic fever with high mortality rates in humans and nonhuman primates. The sequence of events that leads to release of filovirus particles from cells is poorly understood. Two contrasting mechanisms have been proposed, one proceeding via a "submarine-like" budding with the helical nucleocapsid emerging parallel to the plasma membrane, and the other via perpendicular "rocketlike" protrusion. Here we have infected cells with Marburg virus under BSL-4 containment conditions, and reconstructed the sequence of steps in the budding process in three dimensions using electron tomography of plastic-embedded cells. We find that highly infectious filamentous particles are released at early stages in infection. Budding proceeds via lateral association of intracellular nucleocapsid along its whole length with the plasma membrane, followed by rapid envelopment initiated at one end of the nucleocapsid, leading to a protruding intermediate. Scission results in local membrane instability at the rear of the virus. After prolonged infection, increased vesiculation of the plasma membrane correlates with changes in shape and infectivity of released viruses. Our observations demonstrate a cellular determinant of virus shape. They reconcile the contrasting models of filovirus budding and allow us to describe the sequence of events taking place during budding and release of Marburg virus. We propose that this represents a general sequence of events also followed by other filamentous and rod-shaped viruses.
Resumo:
While the half-angle which encloses a Kelvin ship wave pattern is commonly accepted to be 19.47 degrees, recent observations and calculations for sufficiently fast-moving ships suggest that the apparent wake angle decreases with ship speed. One explanation for this decrease in angle relies on the assumption that a ship cannot generate wavelengths much greater than its hull length. An alternative interpretation is that the wave pattern that is observed in practice is defined by the location of the highest peaks; for wakes created by sufficiently fast-moving objects, these highest peaks no longer lie on the outermost divergent waves, resulting in a smaller apparent angle. In this paper, we focus on the problems of free surface flow past a single submerged point source and past a submerged source doublet. In the linear version of these problems, we measure the apparent wake angle formed by the highest peaks, and observe the following three regimes: a small Froude number pattern, in which the divergent waves are not visible; standard wave patterns for which the maximum peaks occur on the outermost divergent waves; and a third regime in which the highest peaks form a V-shape with an angle much less than the Kelvin angle. For nonlinear flows, we demonstrate that nonlinearity has the effect of increasing the apparent wake angle so that some highly nonlinear solutions have apparent wake angles that are greater than Kelvin's angle. For large Froude numbers, the effect on apparent wake angle can be more dramatic, with the possibility of strong nonlinearity shifting the wave pattern from the third regime to the second. We expect our nonlinear results will translate to other more complicated flow configurations, such as flow due to a steadily moving closed body such as a submarine.
Resumo:
Energy efficient embedded computing enables new application scenarios in mobile devices like software-defined radio and video processing. The hierarchical multiprocessor considered in this work may contain dozens or hundreds of resource efficient VLIW CPUs. Programming this number of CPU cores is a complex task requiring compiler support. The stream programming paradigm provides beneficial properties that help to support automatic partitioning. This work describes a compiler for streaming applications targeting the self-build hierarchical CoreVA-MPSoC multiprocessor platform. The compiler is supported by a programming model that is tailored to fit the streaming programming paradigm. We present a novel simulated-annealing (SA) based partitioning algorithm, called Smart SA. The overall speedup of Smart SA is 12.84 for an MPSoC with 16 CPU cores compared to a single CPU implementation. Comparison with a state of the art partitioning algorithm shows an average performance improvement of 34.07%.
Resumo:
Linear assets are engineering infrastructure, such as pipelines, railway lines, and electricity cables, which span long distances and can be divided into different segments. Optimal management of such assets is critical for asset owners as they normally involve significant capital investment. Currently, Time Based Preventive Maintenance (TBPM) strategies are commonly used in industry to improve the reliability of such assets, as they are easy to implement compared with reliability or risk-based preventive maintenance strategies. Linear assets are normally of large scale and thus their preventive maintenance is costly. Their owners and maintainers are always seeking to optimize their TBPM outcomes in terms of minimizing total expected costs over a long term involving multiple maintenance cycles. These costs include repair costs, preventive maintenance costs, and production losses. A TBPM strategy defines when Preventive Maintenance (PM) starts, how frequently the PM is conducted and which segments of a linear asset are operated on in each PM action. A number of factors such as required minimal mission time, customer satisfaction, human resources, and acceptable risk levels need to be considered when planning such a strategy. However, in current practice, TBPM decisions are often made based on decision makers’ expertise or industrial historical practice, and lack a systematic analysis of the effects of these factors. To address this issue, here we investigate the characteristics of TBPM of linear assets, and develop an effective multiple criteria decision making approach for determining an optimal TBPM strategy. We develop a recursive optimization equation which makes it possible to evaluate the effect of different maintenance options for linear assets, such as the best partitioning of the asset into segments and the maintenance cost per segment.
Resumo:
This research examined the influence of tectonic activity on submarine sedimentation processes, through a deposit-based analysis of turbidites in outcrop. A comprehensive field study of the Miocene Whakataki Formation yielded significant data that was analysed using methods of process-sedimentology, stratigraphy, and ichnology. Signatures of the tectonically active depositional environment were identifiable at very high resolution, from grain composition and texture to trace-fossil assemblages, as well as on a broader-scale in stratigraphic stacking patterns and structural deformation. From these results and environmental interpretations, an original facies characterisation and conceptual depositional model have been established.