143 resultados para Quasi-3D mechanics model


Relevância:

40.00% 40.00%

Publicador:

Resumo:

3D in vitro model systems that are able to mimic the in vivo microenvironment are now highly sought after in cancer research. Antheraea mylitta silk fibroin protein matrices were investigated as potential biomaterial for in vitro tumor modeling. We compared the characteristics of MDA-MB-231 cells on A. mylitta, Bombyx mori silk matrices, Matrigel, and tissue culture plates. The attachment and morphology of the MDA-MB-231 cell line on A. mylitta silk matrices was found to be better than on B. mori matrices and comparable to Matrigel and tissue culture plates. The cells grown in all 3D cultures showed more MMP-9 activity, indicating a more invasive potential. In comparison to B. mori fibroin, A. mylitta fibroin not only provided better cell adhesion, but also improved cell viability and proliferation. Yield coefficient of glucose consumed to lactate produced by cells on 3D A. mylitta fibroin was found to be similar to that of cancer cells in vivo. LNCaP prostate cancer cells were also cultured on 3D A. mylitta fibroin and they grew as clumps in long term culture. The results indicate that A. mylitta fibroin scaffold can provide an easily manipulated microenvironment system to investigate individual factors such as growth factors and signaling peptides, as well as evaluation of anticancer drugs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The field of literacy studies has always been challenged by the changing technologies that humans have used to express, represent and communicate their feelings, ideas, understandings and knowledge. However, while the written word has remained central to literacy processes over a long period, it is generally accepted that there have been significant changes to what constitutes ‘literate’ practice. In particular, the status of the printed word has been challenged by the increasing dominance of the image, along with the multimodal meaning-making systems facilitated by digital media. For example, Gunther Kress and other members of the New London Group have argued that the second half of the twentieth century saw a significant cultural shift from the linguistic to the visual as the dominant semiotic mode. This in turn, they suggest, was accompanied by a cultural shift ‘from page to screen’ as a dominant space of representation (e.g. Cope & Kalantzis, 2000; Kress, 2003; New London Group, 1996). In a similar vein, Bill Green has noted that we have witnessed a shift from the regime of the print apparatus to a regime of the digital electronic apparatus (Lankshear, Snyder and Green, 2000). For these reasons, the field of literacy education has been challenged to find new ways to conceptualise what is meant by ‘literacy’ in the twenty first century and to rethink the conditions under which children might best be taught to be fully literate so that they can operate with agency in today’s world.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Virtual environments can provide, through digital games and online social interfaces, extremely exciting forms of interactive entertainment. Because of their capability in displaying and manipulating information in natural and intuitive ways, such environments have found extensive applications in decision support, education and training in the health and science domains amongst others. Currently, the burden of validating both the interactive functionality and visual consistency of a virtual environment content is entirely carried out by developers and play-testers. While considerable research has been conducted in assisting the design of virtual world content and mechanics, to date, only limited contributions have been made regarding the automatic testing of the underpinning graphics software and hardware. The aim of this thesis is to determine whether the correctness of the images generated by a virtual environment can be quantitatively defined, and automatically measured, in order to facilitate the validation of the content. In an attempt to provide an environment-independent definition of visual consistency, a number of classification approaches were developed. First, a novel model-based object description was proposed in order to enable reasoning about the color and geometry change of virtual entities during a play-session. From such an analysis, two view-based connectionist approaches were developed to map from geometry and color spaces to a single, environment-independent, geometric transformation space; we used such a mapping to predict the correct visualization of the scene. Finally, an appearance-based aliasing detector was developed to show how incorrectness too, can be quantified for debugging purposes. Since computer games heavily rely on the use of highly complex and interactive virtual worlds, they provide an excellent test bed against which to develop, calibrate and validate our techniques. Experiments were conducted on a game engine and other virtual worlds prototypes to determine the applicability and effectiveness of our algorithms. The results show that quantifying visual correctness in virtual scenes is a feasible enterprise, and that effective automatic bug detection can be performed through the techniques we have developed. We expect these techniques to find application in large 3D games and virtual world studios that require a scalable solution to testing their virtual world software and digital content.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Three dimensional geological modelling techniques have been applied since 1996 with an aim to characterise the lithological and chronological units of New Zealand’s many diverse aquifers. Models of property-scattered data have also been applied to assess physical properties of aquifers and the distribution of groundwater chemistry, including groundwater age, to inform an understanding of groundwater systems. These models, fundamental to understanding groundwater recharge, flow and discharge have found many uses as outlined in this paper.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A coupled SPH-DEM based two-dimensional (2-D) micro-scale single cell model is developed to predict basic cell-level shrinkage effects of apple parenchyma cells during air drying. In this newly developed drying model, Smoothed Particle Hydrodynamics (SPH) is used to model the low Reynolds Number fluid motions of the cell protoplasm, and a Discrete Element Method (DEM) is employed to simulate the polymer-like cell wall. Simulations results reasonably agree with published experimental drying results on cellular shrinkage properties such as cellular area, diameter and perimeter. These preliminary results indicate that the model is effective for the modelling and simulation of apple parenchyma cells during air drying.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present a rigorous validation of the analytical Amadei solution for the stress concentration around an arbitrarily orientated borehole in general anisotropic elastic media. First, we revisit the theoretical framework of the Amadei solution and present analytical insights that show that the solution does indeed contain all special cases of symmetry, contrary to previous understanding, provided that the reduced strain coefficients b11 and b55 are not equal. It is shown from theoretical considerations and published experimental data that the b11 and b55 are not equal for realistic rocks. Second, we develop a 3D finite element elastic model within a hybrid analytical–numerical workflow that circumvents the need to rebuild and remesh the model for every borehole and material orientation. Third, we show that the borehole stresses computed from the numerical model and the analytical solution match almost perfectly for different borehole orientations (vertical, deviated and horizontal) and for several cases involving isotropic, transverse isotropic and orthorhombic symmetries. It is concluded that the analytical Amadei solution is valid with no restriction on the borehole orientation or the symmetry of the elastic anisotropy.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cancer-associated proteases promote peritoneal dissemination and chemoresistance in malignant progression. In this study, kallikrein-related peptidases 4, 5, 6, and 7 (KLK4-7)-cotransfected OV-MZ-6 ovarian cancer cells were embedded in a bioengineered three-dimensional (3D) microenvironment that contains RGD motifs for integrin engagement to analyze their spheroid growth and survival after chemotreatment. KLK4-7-cotransfected cells formed larger spheroids and proliferated more than controls in 3D, particularly within RGD-functionalized matrices, which was reduced upon integrin inhibition. In contrast, KLK4-7-expressing cell monolayers proliferated less than controls, emphasizing the relevance of the 3D microenvironment and integrin engagement. In a spheroid-based animal model, KLK4-7-overexpression induced tumor growth after 4 weeks and intraperitoneal spread after 8 weeks. Upon paclitaxel administration, KLK4-7-expressing tumors declined in size by 91% (controls: 87%) and showed 90% less metastatic outgrowth (controls: 33%, P<0.001). KLK4-7-expressing spheroids showed 53% survival upon paclitaxel treatment (controls: 51%), accompanied by enhanced chemoresistance-related factors, and their survival was further reduced by combination treatment of paclitaxel with KLK4/5/7 (22%, P=0.007) or MAPK (6%, P=0.006) inhibition. The concomitant presence of KLK4-7 in ovarian cancer cells together with integrin activation drives spheroid formation and proliferation. Combinatorial approaches of paclitaxel and KLK/MAPK inhibition may be more efficient for late-stage disease than chemotherapeutics alone as these inhibitory regimens reduced cancer spheroid growth to a greater extent than paclitaxel alone.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Accurate process model elicitation continues to be a time consuming task, requiring skill on the part of the interviewer to extract explicit and tacit process information from the interviewee. Many errors occur in this elicitation stage that would be avoided by better activity recall, more consistent specification methods and greater engagement in the elicitation process by interviewees. Theories of situated cognition indicate that interactive 3D representations of real work environments engage and prime the cognitive state of the viewer. In this paper, our major contribution is to augment a previous process elicitation methodology with virtual world context metadata, drawn from a 3D simulation of the workplace. We present a conceptual and formal approach for representing this contextual metadata, integrated into a process similarity measure that provides hints for the business analyst to use in later modelling steps. Finally, we conclude with examples from two use cases to illustrate the potential abilities of this approach.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper proposes a physically motivated reappraisal of manoeuvring models for ships and presents a new model developed from first principles by application of low aspect-ratio aerodynamic theory and Lagrangian mechanics. The coefficients of the model are shown to be related to physical processes, and validation is presented using the results from a planar motion mechanism dataset.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Accurate process model elicitation continues to be a time consuming task, requiring skill on the part of the interviewer to extract explicit and tacit process information from the interviewee. Many errors occur in this elicitation stage that would be avoided by better activity recall, more consistent specification methods and greater engagement in the elicitation process by interviewees. Metasonic GmbH has developed a process elicitation tool for their process suite. As part of a research engagement with Metasonic, staff from QUT, Australia have developed a 3D virtual world approach to the same problem, viz. eliciting process models from stakeholders in an intuitive manner. This book chapter tells the story of how QUT staff developed a 3D Virtual World tool for process elicitation, took the outcomes of their research project to Metasonic for evaluation, and finally, Metasonic’s response to the initial proof of concept.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study aimed to develop a 3-Dimensional (D) hydrogel system for the co-culture of autologous human renal and immune cells. Previous studies have shown that human renal epithelial cells are able to modulate autologous immune cell responses. However, these studies were undertaken in a standard 2D culture system. The 3D model was developed to re-capitulate these observations within a more physiological relevant in vivo like environment.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents a novel three-dimensional hybrid smoothed finite element method (H-SFEM) for solid mechanics problems. In 3D H-SFEM, the strain field is assumed to be the weighted average between compatible strains from the finite element method (FEM) and smoothed strains from the node-based smoothed FEM with a parameter α equipped into H-SFEM. By adjusting α, the upper and lower bound solutions in the strain energy norm and eigenfrequencies can always be obtained. The optimized α value in 3D H-SFEM using a tetrahedron mesh possesses a close-to-exact stiffness of the continuous system, and produces ultra-accurate solutions in terms of displacement, strain energy and eigenfrequencies in the linear and nonlinear problems. The novel domain-based selective scheme is proposed leading to a combined selective H-SFEM model that is immune from volumetric locking and hence works well for nearly incompressible materials. The proposed 3D H-SFEM is an innovative and unique numerical method with its distinct features, which has great potential in the successful application for solid mechanics problems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This dissertation proposed a novel experimental model combining a defect configuration with an active instrumented fixation device to investigate the influence of mechanics on bone healing. The proposed defect configuration aimed to minimise physiological loading within an experimental fracture gap and the instrumented fixator was used for the application of controlled displacements and in vivo stiffness monitoring of the healing process. This thesis has provided a novel approach to advance current knowledge and understanding of mechanobiology, which has been limited in previous experimental models.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In castrate-resistant prostate cancer (CRPC), the prevailing organ for metastasis is bone, where the survival of cancer cells is regulated by the permissive metastatic niche offered by the bone marrow. The tumour microenvironment and cellular interactions with the matrix and bone cells enable metastasis and lead to cancer cells becoming androgen resistant. Hence, 3D models that mimic CRPC in terms of an androgen deprivation state (ADS) are needed to identify the mechanisms for CPRC growth in bone and further develop therapeutic strategies.