222 resultados para Mannose 6-phosphate
Resumo:
Conventional clinical therapies are unable to resolve osteochondral defects adequately, hence tissue engineering solutions are sought to address the challenge. A biphasic implant which was seeded with Mesenchymal Stem Cells (MSC) and coupled with an electrospun membrane was evaluated as an alternative. This dual phase construct comprised of a Polycaprolactone (PCL) cartilage scaffold and a Polycaprolactone - Tri Calcium Phosphate (PCL - TCP) osseous matrix. Autologous MSC was seeded into the entire implant via fibrin and the construct was inserted into critically sized osteochondral defects located at the medial condyle and patellar groove of pigs. The defect was resurfaced with a PCL - collagen electrospun mesh that served as a substitute for periosteal flap in preventing cell leakage. Controls either without implanted MSC or resurfacing membrane were included. After 6 months, cartilaginous repair was observed with a low occurrence of fibrocartilage at the medial condyle. Osteochondral repair was promoted and host cartilage degeneration was arrested as shown by the superior Glycosaminoglycan (GAG) maintenance. This positive morphological outcome was supported by a higher relative Young's modulus which indicated functional cartilage restoration. Bone in growth and remodeling occurred in all groups with a higher degree of mineralization in the experimental group. Tissue repair was compromised in the absence of the implanted cells or the resurfacing membrane. Moreover healing was inferior at the patellar groove as compared to the medial condyle and this was attributed to the native biomechanical features.
Resumo:
Raman spectroscopy has been used to study the rare earth mineral churchite-(Y) of formula (Y,REE)(PO4) •2H2O. The mineral contains yttrium and depending on the locality, a range of rare earth metals. The Raman spectra of two churchite-(Y) mineral samples from Jáchymov and Medvědín in the Czech Republic were compared with the Raman spectra of churchite-(Y) downloaded from the RRUFF data base. The Raman spectra of churchite-(Y) are characterized by an intense sharp band at 975 cm-1 assigned to the ν1 (PO4)3- symmetric stretching mode. A lower intensity band observed at around 1065 cm-1 is attributed to the ν3 (PO43-) antisymmetric stretching mode. The (PO43-) bending modes are observed at 497 cm-1 (ν2) and 563 cm-1(ν4). Some small differences in the band positions between the four churchite-(Y) samples from four different localities were found. These differences are possible to explain as different compositions of the churchite-(Y) minerals.
Resumo:
The mixed anion mineral dixenite has been studied by Raman spectroscopy, complimented with infrared spectroscopy. The Raman spectrum of dixenite shows bands at 839 and 813 cm-1 assigned to the (AsO3)3- symmetric and antisymmetric stretching modes. The most intense Raman band of dixenite is the band at 526 cm-1 and is assigned to the ν2 AsO33- bending mode. DFT calculations enabled the position of AsO22- symmetric stretching mode at 839 cm-1, the antisymmetric stretching mode at 813 cm-1, and the deformation mode at 449 cm-1 to be calculated. Raman bands at 1026 and 1057 cm-1 are assigned to the SiO42- symmetric stretching vibrations and at 1349 and 1386 cm-1 to the SiO42- antisymmetric stretching vibrations. Both Raman and infrared spectra indicate the presence of water in the structure of dixenite. This brings into question the commonly accepted formula of dixenite as CuMn2+14Fe3+(AsO3)5(SiO4)2(AsO4)(OH)6. The formula may be better written as CuMn2+14Fe3+(AsO3)5(SiO4)2(AsO4)(OH)6•xH2O.
Resumo:
We evaluate the potential of heparin as a substrate component for the fabrication of bone tissue engineering constructs using poly(e- caprolactone)–tricalcium phosphate–collagen type I (PCL–TCP–Col) three-dimensional (3-D) scaffolds. First we explored the ability of porcine bone marrow precursor cells (MPCs) to differentiate down both the adipogenic and osteogenic pathways within 2-D culture systems, with positive results confirmed by Oil-Red-O and Alizarin Red staining, respectively. Secondly, we examined the influence of heparin on the interaction and behaviour of MPCs when seeded onto PCL–TCP–Col 3-D scaffolds, followed by their induction into the osteogenic lineage. Our 3-D findings suggest that cell metabolism and proliferation increased between days 1 and 14, with deposition of extracellular matrix also observed up to 28 days. However, no noticeable difference could be detected in the extent of osteogenesis for PCL–TCP–Col scaffolds groups with the addition of heparin compared to identical control scaffolds without the addition of heparin.
Resumo:
Abstract: This paper details an in-vitro study using human adipose tissue-derived precursor/stem cells (ADSCs) in three-dimensional (3D) tissue culture systems. ADSCs from 3 donors were seeded onto NaOH-treated medical grade polycaprolactone-tricalcium phosphate (mPCL-TCP) scaffolds with two different matrix components; fibrin glue and lyophilized collagen. ADSCs within these scaffolds were then induced to differentiate along the osteogenic lineage for a 28-day period and various assays and imaging techniques were performed at Day 1, 7, 14, 21 and 28 to assess and compare the ADSC’s adhesion, viability, proliferation, metabolism and differentiation along the osteogenic lineage when cultured in the different scaffold/matrix systems. The ADSC cells were proliferative in both collagen and fibrin mPCL-TCP scaffold systems with a consistently higher cell number (by comparing DNA amounts) in the induced group over the non-induced groups for both scaffold systems. In response to osteogenic induction, these ADSCs expressed elevated osteocalcin, alkaline phosphatase and osteonectin levels. Cells were able to proliferate within the pores of the scaffolds and form dense cellular networks after 28 days of culture and induction. The successful cultivation of osteogenic by FDM process manufactured ADSCs within a 3D matrix comprising fibrin glue or collagen, immobilized within a robust synthetic scaffold is a promising technique which should enhance their potential usage in the regenerative medicine arena, such as bone tissue engineering.
Resumo:
High renewal and maintenance of multipotency of human adult stem cells (hSCs), are a prerequisite for experimental analysis as well as for potential clinical usages. The most widely used strategy for hSC culture and proliferation is using serum. However, serum is poorly defined and has a considerable degree of inter-batch variation, which makes it difficult for large-scale mesenchymal stem cells (MSCs) expansion in homogeneous culture conditions. Moreover, it is often observed that cells grown in serum-containing media spontaneously differentiate into unknown and/or undesired phenotypes. Another way of maintaining hSC development is using cytokines and/or tissue-specific growth factors; this is a very expensive approach and can lead to early unwanted differentiation. In order to circumvent these issues, we investigated the role of sphingosine-1-phosphate (S1P), in the growth and multipotency maintenance of human bone marrow and adipose tissue-derived MSCs. We show that S1P induces growth, and in combination with reduced serum, or with the growth factors FGF and platelet-derived growth factor-AB, S1P has an enhancing effect on growth. We also show that the MSCs cultured in S1P-supplemented media are able to maintain their differentiation potential for at least as long as that for cells grown in the usual serum-containing media. This is shown by the ability of cells grown in S1P-containing media to be able to undergo osteogenic as well as adipogenic differentiation. This is of interest, since S1P is a relatively inexpensive natural product, which can be obtained in homogeneous high-purity batches: this will minimize costs and potentially reduce the unwanted side effects observed with serum. Taken together, S1P is able to induce proliferation while maintaining the multipotency of different human stem cells, suggesting a potential for S1P in developing serum-free or serum-reduced defined medium for adult stem cell cultures.
Resumo:
The near-infrared (NIR) and infrared (IR) spectroscopy has been applied for characterisation of three complex Cu-Zn sulphate/phosphate minerals, namely ktenasite, orthoserpierite and kipushite. The spectral signatures of the three minerals are quite distinct in relation to their composition and structure. The effect of structural cations substitution (Zn2+ and Cu2+) on band shifts is significant both in the electronic and vibrational spectra of these Cu-Zn minerals. The variable Cu:Zn ratio between Zn-rich and Cu-rich compositions shows a strong effect on Cu(II) bands in the electronic spectra. The Cu(II) spectrum is most significant in kipushite (Cu-rich) with bands displayed at high wavenumbers at11390 and 7545 cm-1. The isomorphic substitution of Cu2+ for Zn2+ is reflected in the NIR and IR spectroscopic signatures. The multiple bands for 3 and 4 (SO4)2- stretching vibrations in ktenasite and orthoserpierite are attributed to the reduction of symmetry to the sulphate ion from Td to C2V. The IR spectrum of kipushite is characterised by strong (PO4)3- vibrational modes at 1090 and 990 cm-1. The range of IR absorption is higher in Ktenasite than in kipushite while it is intermediate in orthoserpierite.
Resumo:
This paper reviews some aspects of calcium phosphate chemistry since phosphate in juice is an important parameter in all sugar juice clarification systems. It uses basic concepts to try and explain the observed differences in clarification performance obtained with various liming techniques. The paper also examines the current colorimetric method used for the determination of phosphate in sugar juice. In this method, a phosphomolybdate blue complex formed due to the addition of a dye is measured at 660 nm. Unfortunately, at this wavelength there is interference of the colour arising from within the juice and results in the underestimation of the amount of soluble inorganic phosphate content of juice. It is suggested that phosphate analysis be conducted at the higher wavelength of 875 nm where the interference of the juice colour is minimised.
Resumo:
This paper examines the role of powerful entities and coalitions in shaping international accounting standards. Specifically, the focus is on the process by which the International Accounting Standards Board (IASB) developed IFRS 6, Exploration for and Evaluation of Mineral Resources. In its Issues Paper, the IASB recommended that the successful efforts method be mandated for pre-production costs, eliminating the choice previously available between full cost and successful efforts methods. In spite of the endorsement of this view by a majority of the constituents who responded to the Issues Paper, the final outcome changed nothing, with choice being retained. A compelling explanation of this disparity between the visible inputs and outputs of the standard setting process is the existence of a “black box”, in which powerful extractive industries entities and coalitions covertly influenced the IASB to secure their own ends and ensure that the status quo was maintained
Resumo:
Despite recent developments in fixed-film combined biological nutrients removal (BNR) technology; fixed-film systems (i.e., biofilters), are still at the early stages of development and their application has been limited to a few laboratory-scale experiments. Achieving enhanced biological phosphorus removal in fixed-film systems requires exposing the micro-organisms and the waste stream to alternating anaerobic/aerobic or anaerobic/anoxic conditions in cycles. The concept of cycle duration (CD) as a process control parameter is unique to fixed-film BNR systems, has not been previously investigated, and can be used to optimise the performance of such systems. The CD refers to the elapsed time before the biomass is re-exposed to the same environmental conditions in cycles. Fixed-film systems offer many advantages over suspended growth systems such as reduced operating costs, simplicity of operation, absence of sludge recycling problems, and compactness. The control of nutrient discharges to water bodies, improves water quality, fish production, and allow water reuse. The main objective of this study was to develop a fundamental understanding of the effect of CD on the transformations of nutrients in fixed-film biofilter systems subjected to alternating aeration I no-aeration cycles A fixed-film biofilter system consisting of three up-flow biofilters connected in series was developed and tested. The first and third biofilters were operated in a cyclic mode in which the biomass was subjected to aeration/no-aeration cycles. The influent wastewater was simulated aquaculture whose composition was based on actual water quality parameters of aquacuture wastewater from a prawn grow-out facility. The influent contained 8.5 - 9:3 mg!L a111monia-N, 8.5- 8.7 mg/L phosphate-P, and 45- 50 mg!L acetate. Two independent studies were conducted at two biofiltration rates to evaluate and confirm the effect of CD on nutrient transformations in the biofilter system for application in aquaculture: A third study was conducted to enhance denitrification in the system using an external carbon- source at a rate varying from 0-24 ml/min. The CD was varied in the range of0.25- 120 hours for the first two studies and fixed at 12 hours for the third study. This study identified the CD as an important process control parameter that can be used to optimise the performance of full-scale fixed-film systems for BNR which represents a novel contribution in this field of research. The CD resulted in environmental conditions that inhibited or enhanced nutrient transformations. The effect of CD on BNR in fixed-film systems in terms of phosphorus biomass saturation and depletion has been established. Short CDs did not permit the establishment of anaerobic activity in the un-aerated biofilter and, thus, inhibited phosphorus release. Long CDs resulted in extended anaerobic activity and, thus, resulted in active phosphorus release. Long CDs, however, resulted in depleting the biomass phosphorus reservoir in the releasing biofilter and saturating the biomass phosphorus reservoir in the up-taking biofilter in the cycle. This phosphorus biomass saturation/depletion phenomenon imposes a practical limit on how short or long the CD can be. The length of the CD should be somewhere just before saturation or depletion occur and for the system tested, the optimal CD was 12 hours for the biofiltration rates tested. The system achieved limited net phosphorus removal due to the limited sludge wasting and lack of external carbon supply during phosphorus uptake. The phosphorus saturation and depletion reflected the need to extract phosphorus from the phosphorus-rich micro-organisms, for example, through back-washing. The major challenges of achieving phosphorus removal in the system included: (I) overcoming the deterioration in the performance of the system during the transition period following the start of each new cycle; and (2) wasting excess phosphorus-saturated biomass following the aeration cycle. Denitrification occurred in poorly aerated sections of the third biofilter and generally declined as the CD increased and as the time progressed in the individual cycle. Denitrification and phosphorus uptake were supplied by an internal organic carbon source, and the addition of an external carbon source (acetate) to the third biofilter resulted in improved denitrification efficiency in the system from 18.4 without supplemental carbon to 88.7% when the carbon dose reached 24 mL/min The removal of TOC and nitrification improved as the CD increased, as a result of the reduction in the frequency of transition periods between the cycles. A conceptual design of an effective fixed-film BNR biofilter system for the treatment of the influent simulated aquaculture wastewater was proposed based on the findings of the study.
Resumo:
The aim of this project was to investigate the in vitro osteogenic potential of human mesenchymal progenitor cells in novel matrix architectures built by means of a three-dimensional bioresorbable synthetic framework in combination with a hydrogel. Human mesenchymal progenitor cells (hMPCs) were isolated from a human bone marrow aspirate by gradient centrifugation. Before in vitro engineering of scaffold-hMPC constructs, the adipogenic and osteogenic differentiation potential was demonstrated by staining of neutral lipids and induction of bone-specific proteins, respectively. After expansion in monolayer cultures, the cells were enzymatically detached and then seeded in combination with a hydrogel into polycaprolactone (PCL) and polycaprolactone-hydroxyapatite (PCL-HA) frameworks. This scaffold design concept is characterized by novel matrix architecture, good mechanical properties, and slow degradation kinetics of the framework and a biomimetic milieu for cell delivery and proliferation. To induce osteogenic differentiation, the specimens were cultured in an osteogenic cell culture medium and were maintained in vitro for 6 weeks. Cellular distribution and viability within three-dimensional hMPC bone grafts were documented by scanning electron microscopy, cell metabolism assays, and confocal laser microscopy. Secretion of the osteogenic marker molecules type I procollagen and osteocalcin was analyzed by semiquantitative immunocytochemistry assays. Alkaline phosphatase activity was visualized by p-nitrophenyl phosphate substrate reaction. During osteogenic stimulation, hMPCs proliferated toward and onto the PCL and PCL-HA scaffold surfaces and metabolic activity increased, reaching a plateau by day 15. The temporal pattern of bone-related marker molecules produced by in vitro tissue-engineered scaffold-cell constructs revealed that hMPCs differentiated better within the biomimetic matrix architecture along the osteogenic lineage.
Resumo:
The osteogenic potential of human adipose-derived precursor cells seeded on medical-grade polycaprolactone-tricalcium phosphate scaffolds was investigated in this in vivo study. Three study groups were investigated: (1) induced—stimulated with osteogenic factors only after seeding into scaffold; (2) preinduced—induced for 2 weeks before seeding into scaffolds; and (3) uninduced—cells without any introduced induction. For all groups, scaffolds were implanted subcutaneously into the dorsum of athymic rats. The scaffold/cell constructs were harvested at the end of 6 or 12 weeks and analyzed for osteogenesis. Gross morphological examination using scanning electron microscopy indicated good integration of host tissue with scaffold/cell constructs and extensive tissue infiltration into the scaffold interior. Alizarin Red histology and immunostaining showed a heightened level of mineralization and an increase in osteonectin, osteopontin, and collagen type I protein expression in both the induced and preinduced groups compared with the uninduced groups. However, no significant differences were observed in these indicators when compared between the induced and preinduced groups.