215 resultados para Machine learning approaches
Resumo:
High fidelity simulation as a teaching and learning approach is being embraced by many schools of nursing. Our school embarked on integrating high fidelity (HF) simulation into the undergraduate clinical education program in 2011. Low and medium fidelity simulation has been used for many years, but this did not simplify the integration of HF simulation. Alongside considerations of how and where HF simulation would be integrated, issues arose with: student consent and participation for observed activities; data management of video files; staff development, and conceptualising how methods for student learning could be researched. Simulation for undergraduate student nurses commenced as a formative learning activity, undertaken in groups of eight, where four students undertake the ‘doing’ role and four are structured observers, who then take a formal role in the simulation debrief. Challenges for integrating simulation into student learning included conceptualising and developing scenarios to trigger students’ decision making and application of skills, knowledge and attitudes explicit to solving clinical ‘problems’. Developing and planning scenarios for students to ‘try out’ skills and make decisions for problem solving lay beyond choosing pre-existing scenarios inbuilt with the software. The supplied scenarios were not concept based but rather knowledge, skills and technology (of the manikin) focussed. Challenges lay in using the technology for the purpose of building conceptual mastery rather than using technology simply because it was available. As we integrated use of HF simulation into the final year of the program, focus was on building skills, knowledge and attitudes that went beyond technical skill, and provided an opportunity to bridge the gap with theory-based knowledge that students often found difficult to link to clinical reality. We wished to provide opportunities to develop experiential knowledge based on application and clinical reasoning processes in team environments where problems are encountered, and to solve them, the nurse must show leadership and direction. Other challenges included students consenting for simulations to be videotaped and ethical considerations of this. For example if one student in a group of eight did not consent, did this mean they missed the opportunity to undertake simulation, or that others in the group may be disadvantaged by being unable to review their performance. This has implications for freely given consent but also for equity of access to learning opportunities for students who wished to be taped and those who did not. Alongside this issue were the details behind data management, storage and access. Developing staff with varying levels of computer skills to use software and undertake a different approach to being the ‘teacher’ required innovation where we took an experiential approach. Considering explicit learning approaches to be trialled for learning was not a difficult proposition, but considering how to enact this as research with issues of blinding, timetabling of blinded groups, and reducing bias for testing results of different learning approaches along with gaining ethical approval was problematic. This presentation presents examples of these challenges and how we overcame them.
Resumo:
This paper reports on an empirical study that explores the ways students approach learning to find and use information. Based on interviews with 15 education students in an Australian university, this study uses phenomenography as its methodological and theoretical basis. The study reveals that students use three main strategies for learning information literacy: 1) learning by doing; 2) learning by trial and error; and 3) learning by interacting with other people. Understanding the different ways that students approach learning information literacy will assist librarians and faculty to design and provide more effective information literacy education.
Resumo:
In this article, we report on the findings of an exploratory study into the experience of undergraduate students as they learn new mathematical models. Qualitative and quanti- tative data based around the students’ approaches to learning new mathematical models were collected. The data revealed that students actively adopt three approaches to under- standing a new mathematical model: gathering information for the task of understanding the model, practising with and using the model, and finding interrelationships between elements of the model. We found that the students appreciate mathematical models that have a real world application and that this can be used to engage students in higher level learning approaches.
Resumo:
Active learning approaches reduce the annotation cost required by traditional supervised approaches to reach the same effectiveness by actively selecting informative instances during the learning phase. However, effectiveness and robustness of the learnt models are influenced by a number of factors. In this paper we investigate the factors that affect the effectiveness, more specifically in terms of stability and robustness, of active learning models built using conditional random fields (CRFs) for information extraction applications. Stability, defined as a small variation of performance when small variation of the training data or a small variation of the parameters occur, is a major issue for machine learning models, but even more so in the active learning framework which aims to minimise the amount of training data required. The factors we investigate are a) the choice of incremental vs. standard active learning, b) the feature set used as a representation of the text (i.e., morphological features, syntactic features, or semantic features) and c) Gaussian prior variance as one of the important CRFs parameters. Our empirical findings show that incremental learning and the Gaussian prior variance lead to more stable and robust models across iterations. Our study also demonstrates that orthographical, morphological and contextual features as a group of basic features play an important role in learning effective models across all iterations.
Resumo:
Data-driven approaches such as Gaussian Process (GP) regression have been used extensively in recent robotics literature to achieve estimation by learning from experience. To ensure satisfactory performance, in most cases, multiple learning inputs are required. Intuitively, adding new inputs can often contribute to better estimation accuracy, however, it may come at the cost of a new sensor, larger training dataset and/or more complex learning, some- times for limited benefits. Therefore, it is crucial to have a systematic procedure to determine the actual impact each input has on the estimation performance. To address this issue, in this paper we propose to analyse the impact of each input on the estimate using a variance-based sensitivity analysis method. We propose an approach built on Analysis of Variance (ANOVA) decomposition, which can characterise how the prediction changes as one or more of the input changes, and also quantify the prediction uncertainty as attributed from each of the inputs in the framework of dependent inputs. We apply the proposed approach to a terrain-traversability estimation method we proposed in prior work, which is based on multi-task GP regression, and we validate this implementation experimentally using a rover on a Mars-analogue terrain.
Resumo:
An information filtering (IF) system monitors an incoming document stream to find the documents that match the information needs specified by the user profiles. To learn to use the user profiles effectively is one of the most challenging tasks when developing an IF system. With the document selection criteria better defined based on the users’ needs, filtering large streams of information can be more efficient and effective. To learn the user profiles, term-based approaches have been widely used in the IF community because of their simplicity and directness. Term-based approaches are relatively well established. However, these approaches have problems when dealing with polysemy and synonymy, which often lead to an information overload problem. Recently, pattern-based approaches (or Pattern Taxonomy Models (PTM) [160]) have been proposed for IF by the data mining community. These approaches are better at capturing sematic information and have shown encouraging results for improving the effectiveness of the IF system. On the other hand, pattern discovery from large data streams is not computationally efficient. Also, these approaches had to deal with low frequency pattern issues. The measures used by the data mining technique (for example, “support” and “confidences”) to learn the profile have turned out to be not suitable for filtering. They can lead to a mismatch problem. This thesis uses the rough set-based reasoning (term-based) and pattern mining approach as a unified framework for information filtering to overcome the aforementioned problems. This system consists of two stages - topic filtering and pattern mining stages. The topic filtering stage is intended to minimize information overloading by filtering out the most likely irrelevant information based on the user profiles. A novel user-profiles learning method and a theoretical model of the threshold setting have been developed by using rough set decision theory. The second stage (pattern mining) aims at solving the problem of the information mismatch. This stage is precision-oriented. A new document-ranking function has been derived by exploiting the patterns in the pattern taxonomy. The most likely relevant documents were assigned higher scores by the ranking function. Because there is a relatively small amount of documents left after the first stage, the computational cost is markedly reduced; at the same time, pattern discoveries yield more accurate results. The overall performance of the system was improved significantly. The new two-stage information filtering model has been evaluated by extensive experiments. Tests were based on the well-known IR bench-marking processes, using the latest version of the Reuters dataset, namely, the Reuters Corpus Volume 1 (RCV1). The performance of the new two-stage model was compared with both the term-based and data mining-based IF models. The results demonstrate that the proposed information filtering system outperforms significantly the other IF systems, such as the traditional Rocchio IF model, the state-of-the-art term-based models, including the BM25, Support Vector Machines (SVM), and Pattern Taxonomy Model (PTM).
Resumo:
The early years are an important period for learning, but the questions surrounding participatory learning amongst toddlers remain under-examined. This book presents the latest theoretical and research perspectives about how ECEC (Early Childhood Education and Care) contexts promote democracy and citizenship through participatory learning approaches. The contributors provide insight into national policies, provisions, and practices and advance our understandings of theory and research on toddlers’ experiences for democratic participation across a number of countries, including the UK, Australia, New Zealand, the United States, Canada, Sweden, and Norway.
Resumo:
Student learning research literature has shown that students' learning approaches are influenced by the learning context (Evans, Kirby, & Fabrigar, 2003). Of the many contextual factors, assessment has been found to have the most important influence on the way students go about learning. For example, assessment that is perceived to required a low level of cognitive abilities will more likely elicit a learning approach that concentrate on reproductive learning activities. Moreover, assessment demand will also interact with learning approach to determine academic performance. In this paper an assessment specific model of learning comprising presage, process and product variables (Biggs, 2001) was proposed and tested against data obtained from a sample of introductory economics students (n=434). The model developed was used to empirically investigate the influence of learning inputs and learning approaches on academic performances across assessment types (essay assignment, multiple choice question exam and exam essay). By including learning approaches in the learning model, the mechanism through which learning inputs determine academic performance was examined. Methodological limitations of the study will also be discussed.
Resumo:
Economics education research studies conducted in the UK, USA and Australia to investigate the effects of learning inputs on academic performance have been dominated by the input-output model (Shanahan and Meyer, 2001). In the Student Experience of Learning framework, however, the link between learning inputs and outputs is mediated by students' learning approaches which in turn are influenced by their perceptions of the learning contexts (Evans, Kirby, & Fabrigar, 2003). Many learning inventories such as Biggs' Study Process Questionnaires and Entwistle and Ramsden' Approaches to Study Inventory have been designed to measure approaches to academic learning. However, there is a limitation to using generalised learning inventories in that they tend to aggregate different learning approaches utilised in different assessments. As a result, important relationships between learning approaches and learning outcomes that exist in specific assessment context(s) will be missed (Lizzio, Wilson, & Simons, 2002). This paper documents the construction of an assessment specific instrument to measure learning approaches in economics. The post-dictive validity of the instrument was evaluated by examining the association of learning approaches to students' perceived assessment demand in different assessment contexts.
Resumo:
In the study of student learning literature, the traditional view holds that when students are faced with heavy workload, poor teaching, and content that they cannot relate to – important aspects of the learning context, they will more likely utilise the surface approach to learning due to stresses, lack of understanding and lack of perceived relevance of the content (Kreber, 2003; Lizzio, Wilson, & Simons, 2002; Ramdsen, 1989; Ramsden, 1992; Trigwell & Prosser, 1991; Vermunt, 2005). For example, in studies involving health and medical sciences students, courses that utilised student-centred, problem-based approaches to teaching and learning were found to elicit a deeper approach to learning than the teacher-centred, transmissive approach (Patel, Groen, & Norman, 1991; Sadlo & Richardson, 2003). It is generally accepted that the line of causation runs from the learning context (or rather students’ self reported data on the learning context) to students’ learning approaches. That is, it is the learning context as revealed by students’ self-reported data that elicit the associated learning behaviour. However, other research studies also found that the same teaching and learning environment can be perceived differently by different students. In a study of students’ perceptions of assessment requirements, Sambell and McDowell (1998) found that students “are active in the reconstruction of the messages and meanings of assessment” (p. 391), and their interpretations are greatly influenced by their past experiences and motivations. In a qualitative study of Hong Kong tertiary students, Kember (2004) found that students using the surface learning approach reported heavier workload than students using the deep learning approach. According to Kember if students learn by extracting meanings from the content and making connections, they will more likely see the higher order intentions embodied in the content and the high cognitive abilities being assessed. On the other hand, if they rote-learn for the graded task, they fail to see the hierarchical relationship in the content and to connect the information. These rote-learners will tend to see the assessment as requiring memorising and regurgitation of a large amount of unconnected knowledge, which explains why they experience a high workload. Kember (2004) thus postulate that it is the learning approach that influences how students perceive workload. Campbell and her colleagues made a similar observation in their interview study of secondary students’ perceptions of teaching in the same classroom (Campbell et al., 2001). The above discussions suggest that students’ learning approaches can influence their perceptions of assessment demands and other aspects of the learning context such as relevance of content and teaching effectiveness. In other words, perceptions of elements in the teaching and learning context are endogenously determined. This study attempted to investigate the causal relationships at the individual level between learning approaches and perceptions of the learning context in economics education. In this study, students’ learning approaches and their perceptions of the learning context were measured. The elements of the learning context investigated include: teaching effectiveness, workload and content. The authors are aware of existence of other elements of the learning context, such as generic skills, goal clarity and career preparation. These aspects, however, were not within the scope of this present study and were therefore not investigated.
Resumo:
Optical flow (OF) is a powerful motion cue that captures the fusion of two important properties for the task of obstacle avoidance − 3D self-motion and 3D environmental surroundings. The problem of extracting such information for obstacle avoidance is commonly addressed through quantitative techniques such as time-to-contact and divergence, which are highly sensitive to noise in the OF image. This paper presents a new strategy towards obstacle avoidance in an indoor setting, using the combination of quantitative and structural properties of the OF field, coupled with the flexibility and efficiency of a machine learning system.The resulting system is able to effectively control the robot in real-time, avoiding obstacles in familiar and unfamiliar indoor environments, under given motion constraints. Furthermore, through the examination of the networks internal weights, we show how OF properties are being used toward the detection of these indoor obstacles.
Resumo:
This paper details the development of a machine learning system which uses the helicopter state and the actions of an instructing pilot to synthesise helicopter control modules online. Aggressive destabilisation/restabilisation sequences are used for training, such that a wide state space envelope is covered during training. The performance of heading, roll, pitch, height and lateral velocity control learning is presented using our Xcell 60 experimental platform. The helicopter is demonstrated to be stabilised on all axes using the “learning from a pilot” technique. To our knowledge, this is the first time a “learning from a pilot” technique has been successfully applied to all axes.