180 resultados para Homeostasis Model Assessment
Resumo:
BACKGROUND: Monitoring studies revealed high concentrations of pesticides in the drainage canal of paddy fields. It is important to have a way to predict these concentrations in different management scenarios as an assessment tool. A simulation model for predicting the pesticide concentration in a paddy block (PCPF-B) was evaluated and then used to assess the effect of water management practices for controlling pesticide runoff from paddy fields. RESULTS: The PCPF-B model achieved an acceptable performance. The model was applied to a constrained probabilistic approach using the Monte Carlo technique to evaluate the best management practices for reducing runoff of pretilachlor into the canal. The probabilistic model predictions using actual data of pesticide use and hydrological data in the canal showed that the water holding period (WHP) and the excess water storage depth (EWSD) effectively reduced the loss and concentration of pretilachlor from paddy fields to the drainage canal. The WHP also reduced the timespan of pesticide exposure in the drainage canal. CONCLUSIONS: It is recommended that: (1) the WHP be applied for as long as possible, but for at least 7 days, depending on the pesticide and field conditions; (2) an EWSD greater than 2 cm be maintained to store substantial rainfall in order to prevent paddy runoff, especially during the WHP.
Resumo:
Health challenges present arguably the most significant barrier to sustainable global development. The introduction of ICT in healthcare, especially the application of mobile communications, has created the potential to transform healthcare delivery by making it more accessible, affordable and effective across the developing world. However, current research into the assessment of mHealth from the perspective of developing countries particularly with community Health workers (CHWs) as primary users continues to be limited. The aim of this study is to analyze the contribution of mHealth in enhancing the performance of the health workers and its alignment with existing workflows to guide its utilization. The proposed research takes into account this consideration and aims to examine the task-technology alignment of mHealth for CHWs drawing upon the task technology fit as the theoretical foundation.
Resumo:
Business Process Management (BPM) has been identified as the number one business priority by a recent Gartner study (Gartner, 2005). However, BPM has a plethora of facets as its origins are in Business Process Reengineering, Process Innovation, Process Modelling, and Workflow Management to name a few. Organisations increasingly recognize the requirement for an increased process orientation and require appropriate comprehensive frameworks, which help to scope and evaluate their BPM initiative. This research project aims toward the development of a holistic and widely accepted BPM maturity model, which facilitates the assessment of BPM capabilities. This paper provides an overview about the current model with a focus on the actual model development utilizing a series of Delphi studies. The development process includes separate studies that focus on further defining and expanding the six core factors within the model, i.e. strategic alignment, governance, method, Information Technology, people and culture.
Resumo:
This paper discusses the different perceptions of first year accounting students about their tutorial activities and their engagements in assessment. As the literature suggests, unless participation in learning activities forms part of graded assessment, it is often difficult to engage students in these activities. Using an action research model, this paper reports the study of first year accounting students' responses to action-oriented learning tasks in tutorials. The paper focuses on the importance of aligning curriculum objectives, learning and teaching activities and assessment, i.e. the notion of constructive alignment. However, as the research findings indicate, without support at institutional level, applying constructive alignment to facilitate quality student learning outcomes is a difficult task. Thus, the impacts of policy constraints on curriculum issues are also discussed, focusing on the limitations faced by tutors and their lack of involvement in curriculum development.
Resumo:
This paper discusses perceptions of first year accounting students about their tutorial activities and their engagements in assessment. As the literature suggests, unless participation in learning activities forms part of graded assessment it is often difficult to engage students in these activities. Using an action research model, this paper reports the study of first year accounting students' responses to action-orientated learning tasks in tutorials. The paper focuses on the importance of aligning curriculum objectives, learning and teaching activities and assessment,i.e. the notion of constructive alignment. However, as the research findings indicate, without support at institutional level, applying constructive alignment to facilitate quality student learning outcomes is a difficult task. Thus, the impacts of policy constraints on curriculum issues are also discussed, focusing on the limitations faced by tutors and their lack of involvement in curriculum development.
Resumo:
Educational assessment was a worldwide commonplace practice in the last century. With the theoretical underpinnings of education shifting from behaviourism and social efficiency to constructivism and cognitive theories in the past two decades, the assessment theories and practices show a widespread changing movement. The emergent assessment paradigm, with a futurist perspective, indicates a deviation away from the prevailing large scale high-stakes standardised testing and an inclination towards classroom-based formative assessment. Innovations and reforms initiated in attempts to achieve better education outcomes for a sustainable future via more developed learning and assessment theories have included the 2007 College English Reform Program (CERP) in Chinese higher education context. This paper focuses on the College English Test (CET) - the national English as a Foreign Language (EFL) testing system for non-English majors at tertiary level in China. It seeks to explore the roles that the CET played in the past two College English curriculum reforms, and the new role that testing and assessment assumed in the newly launched reform. The paper holds that the CET was operationalised to uplift the standards. However, the extended use of this standardised testing system brings constraints as well as negative washback effects on the tertiary EFL education. Therefore in the newly launched reform -CERP, a new assessment model which combines summative and formative assessment approaches is proposed. The testing and assessment, assumed a new role - to engender desirable education outcomes. The question asked is: will the mixed approach to formative and summative assessment provide the intended cure to the agony that tertiary EFL education in China has long been suffering - spending much time, yet achieving little effects? The paper reports the progresses and challenges as informed by the available research literature, yet asserts a lot needs to be explored on the potential of the assessment mix in this examination tradition deep-rooted and examination-obsessed society.
Resumo:
Modern Engineering Asset Management (EAM) requires the accurate assessment of current and the prediction of future asset health condition. Appropriate mathematical models that are capable of estimating times to failures and the probability of failures in the future are essential in EAM. In most real-life situations, the lifetime of an engineering asset is influenced and/or indicated by different factors that are termed as covariates. Hazard prediction with covariates is an elemental notion in the reliability theory to estimate the tendency of an engineering asset failing instantaneously beyond the current time assumed that it has already survived up to the current time. A number of statistical covariate-based hazard models have been developed. However, none of them has explicitly incorporated both external and internal covariates into one model. This paper introduces a novel covariate-based hazard model to address this concern. This model is named as Explicit Hazard Model (EHM). Both the semi-parametric and non-parametric forms of this model are presented in the paper. The major purpose of this paper is to illustrate the theoretical development of EHM. Due to page limitation, a case study with the reliability field data is presented in the applications part of this study.
Resumo:
Folio submission is universally regarded as the most appropriate means for measuring a student’s performance in the studio. However, developing meaningful and defensible assessment criteria is persistent challenge for all tertiary art educators. In discipline-based studios, the parameters provided by medium and technique provide useful points of reference for assessing creative performance. But how can student performance be evaluated when there is no discipline-based framework to act as a point of reference? The ‘open’ studio approach to undergraduate teaching presents these and other pedagogical challenges. This paper discusses the innovative approaches to studio-based teaching and assessment at QUT. Vital to the QUT open studio model is the studio rationale – an exegetical document that establishes an individualised theoretical framework through which a student’s understandings can be, in part, evaluated. This paper argues that the exegetical folio effectively reconciles the frequently divergent imperatives of creative, professional and academic skills, while retaining the centrality of the studio as a site for the production of new material, processual and conceptual understandings.
Resumo:
In condition-based maintenance (CBM), effective diagnostics and prognostics are essential tools for maintenance engineers to identify imminent fault and to predict the remaining useful life before the components finally fail. This enables remedial actions to be taken in advance and reschedules production if necessary. This paper presents a technique for accurate assessment of the remnant life of machines based on historical failure knowledge embedded in the closed loop diagnostic and prognostic system. The technique uses the Support Vector Machine (SVM) classifier for both fault diagnosis and evaluation of health stages of machine degradation. To validate the feasibility of the proposed model, the five different level data of typical four faults from High Pressure Liquefied Natural Gas (HP-LNG) pumps were used for multi-class fault diagnosis. In addition, two sets of impeller-rub data were analysed and employed to predict the remnant life of pump based on estimation of health state. The results obtained were very encouraging and showed that the proposed prognosis system has the potential to be used as an estimation tool for machine remnant life prediction in real life industrial applications.
Groundwater flow model of the Logan river alluvial aquifer system Josephville, South East Queensland
Resumo:
The study focuses on an alluvial plain situated within a large meander of the Logan River at Josephville near Beaudesert which supports a factory that processes gelatine. The plant draws water from on site bores, as well as the Logan River, for its production processes and produces approximately 1.5 ML per day (Douglas Partners, 2004) of waste water containing high levels of dissolved ions. At present a series of treatment ponds are used to aerate the waste water reducing the level of organic matter; the water is then used to irrigate grazing land around the site. Within the study the hydrogeology is investigated, a conceptual groundwater model is produced and a numerical groundwater flow model is developed from this. On the site are several bores that access groundwater, plus a network of monitoring bores. Assessment of drilling logs shows the area is formed from a mixture of poorly sorted Quaternary alluvial sediments with a laterally continuous aquifer comprised of coarse sands and fine gravels that is in contact with the river. This aquifer occurs at a depth of between 11 and 15 metres and is overlain by a heterogeneous mixture of silts, sands and clays. The study investigates the degree of interaction between the river and the groundwater within the fluvially derived sediments for reasons of both environmental monitoring and sustainability of the potential local groundwater resource. A conceptual hydrogeological model of the site proposes two hydrostratigraphic units, a basal aquifer of coarse-grained materials overlain by a thick semi-confining unit of finer materials. From this, a two-layer groundwater flow model and hydraulic conductivity distribution was developed based on bore monitoring and rainfall data using MODFLOW (McDonald and Harbaugh, 1988) and PEST (Doherty, 2004) based on GMS 6.5 software (EMSI, 2008). A second model was also considered with the alluvium represented as a single hydrogeological unit. Both models were calibrated to steady state conditions and sensitivity analyses of the parameters has demonstrated that both models are very stable for changes in the range of ± 10% for all parameters and still reasonably stable for changes up to ± 20% with RMS errors in the model always less that 10%. The preferred two-layer model was found to give the more realistic representation of the site, where water level variations and the numerical modeling showed that the basal layer of coarse sands and fine gravels is hydraulically connected to the river and the upper layer comprising a poorly sorted mixture of silt-rich clays and sands of very low permeability limits infiltration from the surface to the lower layer. The paucity of historical data has limited the numerical modelling to a steady state one based on groundwater levels during a drought period and forecasts for varying hydrological conditions (e.g. short term as well as prolonged dry and wet conditions) cannot reasonably be made from such a model. If future modelling is to be undertaken it is necessary to establish a regular program of groundwater monitoring and maintain a long term database of water levels to enable a transient model to be developed at a later stage. This will require a valid monitoring network to be designed with additional bores required for adequate coverage of the hydrogeological conditions at the Josephville site. Further investigations would also be enhanced by undertaking pump testing to investigate hydrogeological properties in the aquifer.
Resumo:
The broad definition of sustainable development at the early stage of its introduction has caused confusion and hesitation among local authorities and planning professionals. The main difficulties are experience in employing loosely-defined principles of sustainable development in setting policies and goals. The question of how this theory/rhetoric-practice gap could be filled will be the theme of this study. One of the widely employed sustainability accounting approaches by governmental organisations, triple bottom line, and applicability of this approach to sustainable urban development policies will be examined. When incorporating triple bottom line considerations with the environmental impact assessment techniques, the framework of GIS-based decision support system that helps decision-makers in selecting policy option according to the economic, environmental and social impacts will be introduced. In order to embrace sustainable urban development policy considerations, the relationship between urban form, travel pattern and socio-economic attributes should be clarified. This clarification associated with other input decision support systems will picture the holistic state of the urban settings in terms of sustainability. In this study, grid-based indexing methodology will be employed to visualise the degree of compatibility of selected scenarios with the designated sustainable urban future. In addition, this tool will provide valuable knowledge about the spatial dimension of the sustainable development. It will also give fine details about the possible impacts of urban development proposals by employing disaggregated spatial data analysis (e.g. land-use, transportation, urban services, population density, pollution, etc.). The visualisation capacity of this tool will help decision makers and other stakeholders compare and select alternative of future urban developments.
Resumo:
Sustainable development has long been promoted as the best answer to the world's environmental problems. This term has generated mass appeal as it implies that the development of the built environment and its associated resource consumption can both be achieved without jeopardising the natural environment. In the urban context, sustainability issues have been reflected in the pomotion of sustainable urbanisation in a manner that allows future generations to repeat this process. This paper attempts to highlight an increasing urgency in formulating a suitable model for assessing sustainability at urban level, because this is where the bulk of a nation's population reside, and where sustainability problems mostly occur. It will also point out to the increasing importance of governance in facilitating urban sustainability research. This assessment involves the use of physical, social, environmental and goverance aspects in assessing the extent to which development of an urban settlement is sustainable. Specifically, this assessment model is carried out to determine whether or not sustainable urban development pratice is implemented in the provision of residential development, and in particular whether the development of master-planned residential communities have more desireable outcomes compared to traditional residential subdivision.