148 resultados para Ancillary ligand


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The unusual (1:1) complex ‘adduct’ salt of copper(II) with 4,5-dichlorophthalic acid (H2DCPA), having formula [Cu(H2O)4(C8H3Cl2O4) (C8H4Cl2O4)] . (C8H3Cl2O4) has been synthesized and characterized using single-crystal X-ray diffraction. Crystals are monoclinic, space group P21/c, with Z = 4 in a cell with dimensions a = 20.1376(7), b =12.8408(4) c = 12.1910(4) Å, β = 105.509(4)o. The complex is based on discrete tetragonally distorted octahedral [CuO6] coordination centres with the four water ligands occupying the square planar sites [Cu-O, 1.962(4)-1.987(4) Å] and the monodentate carboxyl-O donors of two DCPA ligand species in the axial sites. The first of these bonds [Cu-O, 2.341(4) Å] is with an oxygen of a HDCPA monoanion, the second with an oxygen of a H2DCPA acid species [Cu-O, 2.418(4) Å]. The un-coordinated ‘adduct’ molecule is a HDCPA counter anion which is strongly hydrogen-bonded to the coordinated H2DCPA ligand [O… O, 2.503(6) Å] while a number of peripheral intra- and intermolecular hydrogen-bonding interactions give a two-dimensional network structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two series of novel ruthenium bipyridyl dyes incorporating sulfur-donor bidentate ligands with general formula \[Ru(R-bpy)2C2N2S2] and \[Ru(R-bpy)2(S2COEt)]\[NO3] (where R =H, CO2Et, CO2H; C2N2S2 = cyanodithioimidocarbonate and S2COEt = ethyl xanthogenate) have been synthesized and characterized spectroscopically, electrochemically and computationally. The acid derivatives in both series (C2N2S2 3 and S2COEt 6) were used as a photosensitizer in a dye-sensitized solar cell (DSSC) and the incident photo-to-current conversion efficiency (IPCE), overall efficiency (_) and kinetics of the dye/TiO2 system were investigated. It was found that 6 gave a higher efficiency cell than 3 despite the latter dye’s more favorable electronic properties, such as greater absorption range, higher molar extinction coefficient and large degree of delocalization of the HOMO. The transient absorption spectroscopy studies revealed that the recombination kinetics of 3 were unexpectedly fast, which was attributed to the terminal CN on the ligand binding to the TiO2, as evidenced by an absorption study of R =H and CO2Et dyes sensitized on TiO2, and hence leading to a lower efficiency DSSC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Building on the investigation of the Charity Commission (2009) on the effects of the economic downturn on the largest trusts and foundation in the United Kingdom, the purpose of this research was to assess the extent to which Australian trusts and foundations were taking an actively strategic approach to their investments and pursuit of mission (including grant-making), and the relationship between the two in the context of the economic downturn. Focus was given to identifying the issues raised as a consequence of the economic downturn, rather than providing a generalised snapshot of the ‘average’ foundations response. In September 2009, semi-structured, in depth interviews were conducted with executives of 23 grant making trusts and foundations. The interviews for this research focused on the largest grant makers in terms of grant expenditure, however included foundations from different geographical locations and from across different cause areas. It is important to stress at the outset that this was not a representative sample of foundations; the study aimed to identify issues rather than to present a representative picture of the ‘average’ foundation’s response. It is also important to note that the study was undertaken in September 2009 at a time when many foundations were beginning to feel more optimistic about the longer term future, but aware of continuing and possibly worsening short term income problems. But whatever the financial future, some of the underlying issues, concerning investment and grant making management practices, raised in this report will be of continuing relevance worthy of wider discussion. If a crisis is too good to waste, it is also too good to forget. One other introductory point – as previously noted, interviews for this study were conducted in September 2009 – just one month prior to the introduction of the new Private Ancillary Fund (PAF) legislation which replaced the previous Prescribed Private Fund (PPF) arrangement1. References to PAFs and/or PPFs reflect that time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The androgen receptor (AR) is a ligand-activated transcription factor of the nuclear receptor superfamily that plays a critical role in male physiology and pathology. Activated by binding of the native androgens testosterone and 5-dihydrotestosterone, the AR regulates transcription of genes involved in the development and maintenance of male phenotype and male reproductive function as well as other tissues such as bone and muscle. Deregulation of AR signaling can cause a diverse range of clinical conditions, including the X-linked androgen insensitivity syndrome, a form of motor neuron disease known as Kennedy’s disease, and male infertility. In addition, there is now compelling evidence that the AR is involved in all stages of prostate tumorigenesis including initiation, progression, and treatment resistance. To better understand the role of AR signaling in the pathogenesis of these conditions, it is important to have a comprehensive understanding of the key determinants of AR structure and function. Binding of androgens to the AR induces receptor dimerization, facilitating DNA binding and the recruitment of cofactors and transcriptional machinery to regulate expression of target genes. Various models of dimerization have been described for the AR, the most well characterized interaction being DNA-binding domain- mediated dimerization, which is essential for the AR to bind DNA and regulate transcription. Additional AR interactions with potential to contribute to receptor dimerization include the intermolecular interaction between the AR amino terminal domain and ligand-binding domain known as the N-terminal/C-terminal interaction, and ligand-binding domain dimerization. In this review, we discuss each form of dimerization utilized by the AR to achieve transcriptional competence and highlight that dimerization through multiple domains is necessary for optimal AR signaling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Obesity represents a major health, social and economic burden to many developing and Westernized communities, with the prevalence increasing at a rate exceeding almost all other medical conditions. Despite major recent advances in our understanding of adipose tissue metabolism and dynamics, we still have limited insight into the regulation of adipose tissue mass in humans. Any significant increase in adipose tissue mass requires proliferation and differentiation of precursor cells (preadipocytes) present in the stromo-vascular compartment of adipose tissue. These processes are very complex and an increasing number of growth factors and hormones have been shown to modulate the expression of genes involved in preadipocyte proliferation and differentiation. A number of transcription factors, including the C/EBP family and PP ARy, have been identified as integral to adipose tissue development and preadipocyte differentiation. Together PP ARy and C/EBPa regulate important events in the activation and maintenance of the terminally differentiated phenotype. The ability of PP ARy to increase transcription through its DNA recognition site is dependent on the binding of ligands. This suggests that an endogenous PP ARy ligand may be an important regulator of adipogenesis. Adipose tissue functions as both the major site of energy storage in the body and as an endocrine organ synthesizing and secreting a number of important molecules involved in regulation of energy balance. For optimum functioning therefore, adipose tissue requires extensive vascularization and previous studies have shown that growth of adipose tissue is preceded by development of a microvascular network. This suggests that paracrine interactions between constituent cells in adipose tissue may be involved in both new capillary formation and fat cell growth. To address this hypothesis the work in this project was aimed at (a) further development of a method for inducing preadipocyte differentiation in subcultured human cells; (b) establishing a method for simultaneous isolation and separate culture of both preadipocytes and microvascular endothelial cells from the same adipose tissue biopsies; (c) to determine, using conditioned medium and co-culture techniques, if endothelial cell-derived factors influence the proliferation and/or differentiation of human preadipocytes; and (d) commence characterization of factors that may be responsible for any observed paracrine effects on aspects of human adipogenesis. Major findings of these studies were as follows: (A) Inclusion of either linoleic acid (a long-chain fatty acid reported to be a naturally occurring ligand for PP ARy) or Rosiglitazone (a member of the thiazolidinedione class of insulin-sensitizing drugs and a synthetic PPARy ligand) in differentiation medium had markedly different effects on preadipocyte differentiation. These studies showed that human preadipocytes have the potential to accumulate triacylglycerol irrespective of their stage of biochemical differentiation, and that thiazolidinediones and fatty acids may exert their adipogenic and lipogenic effects via different biochemical pathways. It was concluded that Rosiglitazone is a more potent inducer of human preadipocyte differentiation than linoleic acid. (B) A method for isolation and culture of both endothelial cells and preadipocytes from the same adipose tissue biopsy was developed. Adipose-derived microvascular endothelial cells were found to produce factor/s, which enhance both proliferation and differentiation of human preadipocytes. (C) The adipogenic effects of microvascular endothelial cells can be mimicked by exposure of preadipocytes to members of the Fibroblast Growth Factor family, specifically ~-ECGF and FGF-1. (D) Co-culture of human preadipocytes with endothelial cells or exposure of preadipocytes to either ~-ECGF or FGF-1 were found to 'prime' human preadipocytes, during their proliferative phase of growth, for thiazolidinedione-induced differentiation. (E) FGF -1 was not found to be acting as a ligand for PP ARy in this system. Findings from this project represent a significant step forward in our understanding of factors involved in growth of human adipose tissue and may lead to the development of therapeutic strategies aimed at modifying the process. Such strategies would have potential clinical utility in the treatment of obesity and obesity related disorders such as Type II Diabetes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background The androgen receptor is a ligand-induced transcriptional factor, which plays an important role in normal development of the prostate as well as in the progression of prostate cancer to a hormone refractory state. We previously reported the identification of a novel AR coactivator protein, L-dopa decarboxylase (DDC), which can act at the cytoplasmic level to enhance AR activity. We have also shown that DDC is a neuroendocrine (NE) marker of prostate cancer and that its expression is increased after hormone-ablation therapy and progression to androgen independence. In the present study, we generated tetracycline-inducible LNCaP-DDC prostate cancer stable cells to identify DDC downstream target genes by oligonucleotide microarray analysis. Results Comparison of induced DDC overexpressing cells versus non-induced control cell lines revealed a number of changes in the expression of androgen-regulated transcripts encoding proteins with a variety of molecular functions, including signal transduction, binding and catalytic activities. There were a total of 35 differentially expressed genes, 25 up-regulated and 10 down-regulated, in the DDC overexpressing cell line. In particular, we found a well-known androgen induced gene, TMEPAI, which wasup-regulated in DDC overexpressing cells, supporting its known co-activation function. In addition, DDC also further augmented the transcriptional repression function of AR for a subset of androgen-repressed genes. Changes in cellular gene transcription detected by microarray analysis were confirmed for selected genes by quantitative real-time RT-PCR. Conclusion Taken together, our results provide evidence for linking DDC action with AR signaling, which may be important for orchestrating molecular changes responsible for prostate cancer progression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have used a scanning tunneling microscope to manipulate heteroleptic phthalocyaninato, naphthalocyaninato, porphyrinato double-decker molecules at the liquid/solid interface between 1-phenyloctane solvent and graphite. We employed nano-grafting of phthalocyanines with eight octyl chains to place these molecules into a matrix of heteroleptic double-decker molecules; the overlayer structure is epitaxial on graphite. We have also used nano-grafting to place double-decker molecules in matrices of single-layer phthalocyanines with octyl chains. Rectangular scans with a scanning tunneling microscope at low bias voltage resulted in the removal of the adsorbed doubledecker molecular layer and substituted the double-decker molecules with bilayer-stacked phthalocyanines from phenyloctane solution. Single heteroleptic double-decker molecules with lutetium sandwiched between naphthalocyanine and octaethylporphyrin were decomposed with voltage pulses from the probe tip; the top octaethylporphyrin ligand was removed and the bottom naphthalocyanine ligand remained on the surface. A domain of decomposed molecules was formed within the double-decker molecular domain, and the boundary of the decomposed molecular domain self-cured to become rectangular. We demonstrated a molecular “sliding block puzzle” with cascades of double-decker molecules on the graphite surface.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An ethylenediamine-assisted route has been designed for one-step synthesis of lithium niobate particles with a novel rodlike structure in an aqueous solution system. The morphological evolution for these lithium niobate rods was monitored via SEM: The raw materials form large lozenges first. These lozenges are a metastable intermediate of this reaction, and they subsequently crack into small rods after sufficiently long time. These small rods recrystallize and finally grow into individual lithium niobate rods. Interestingly, shape-controlled fabrication of lithium niobate powders was achieved through using different amine ligands. For instance, the ethylenediamine or ethanolamine ligan can induce the formation of rods, while n-butylamine prefers to construct hollow spheres. These as-obtained lithium niobate rods and hollow spheres may exhibit enhanced performance in an optical application field due to their distinctive structures. This effective ligand-tuned-morphology route can provide a new strategy to facilely achieve the shape-controlled synthesis of other niobates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ghrelin was first identified in 1999 by Kojima and colleagues (Kojima et al. 1999) as the natural ligand of an orphan G-protein coupled receptor, the Growth Hormone (GH) secretagogue receptor (GHS-R), which had been identified several years earlier through the actions of a growing number of synthetic growth hormone releasing peptides (GHRPs) and non-peptidyl GH secretagogues (Howard et al. 1996). Early studies, therefore, focussed on the actions of ghrelin as an important regulator of GH secretion. As a result Kojima et al (1999) designated this GH-releasing peptide, ghrelin (ghre is the Proto-Indo-European root of the word 'grow'). We now recognise that the functions of ghrelin extend well beyond its GH releasing actions and that it is a multi-functional peptide with both endocrine and autocrine/paracrine modes of action.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ghrelin is a peptide hormone that was originally isolated from the stomach as the endogenous ligand for the growth hormone secretagogue receptor (GHSR). Ghrelin has many functions, including the regulation of appetite and gut motility, growth hormone release from the anterior pituitary and roles in the cardiovascular and immune systems. Ghrelin and its receptor are expressed in a number of cancers and cancer cell lines and may play a role in processes associated with cancer progression, including cell proliferation, apoptosis, and cell invasion and migration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to tackle the growth of air travelers in airports worldwide, it is important to simulate and understand passenger flows to predict future capacity constraints and levels of service. We discuss the ability of agent-based models to understand complicated pedestrian movement in built environments. In this paper we propose advanced passenger traits to enable more detailed modelling of behaviors in terminal buildings, particularly in the departure hall around the check-in facilities. To demonstrate the concepts, we perform a series of passenger agent simulations in a virtual airport terminal. In doing so, we generate a spatial distribution of passengers within the departure hall to ancillary facilities such as cafes, information kiosks and phone booths as well as common check-in facilities, and observe the effects this has on passenger check-in and departure hall dwell times, and facility utilization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract As regional and continental carbon balances of terrestrial ecosystems become available, it becomes clear that the soils are the largest source of uncertainty. Repeated inventories of soil organic carbon (SOC) organized in soil monitoring networks (SMN) are being implemented in a number of countries. This paper reviews the concepts and design of SMNs in ten countries, and discusses the contribution of such networks to reducing the uncertainty of soil carbon balances. Some SMNs are designed to estimate country-specific land use or management effects on SOC stocks, while others collect soil carbon and ancillary data to provide a nationally consistent assessment of soil carbon condition across the major land-use/soil type combinations. The former use a single sampling campaign of paired sites, while for the latter both systematic (usually grid based) and stratified repeated sampling campaigns (5–10 years interval) are used with densities of one site per 10–1,040 km². For paired sites, multiple samples at each site are taken in order to allow statistical analysis, while for the single sites, composite samples are taken. In both cases, fixed depth increments together with samples for bulk density and stone content are recommended. Samples should be archived to allow for re-measurement purposes using updated techniques. Information on land management, and where possible, land use history should be systematically recorded for each site. A case study of the agricultural frontier in Brazil is presented in which land use effect factors are calculated in order to quantify the CO2 fluxes from national land use/management conversion matrices. Process-based SOC models can be run for the individual points of the SMN, provided detailed land management records are available. These studies are still rare, as most SMNs have been implemented recently or are in progress. Examples from the USA and Belgium show that uncertainties in SOC change range from 1.6–6.5 Mg C ha−1 for the prediction of SOC stock changes on individual sites to 11.72 Mg C ha−1 or 34% of the median SOC change for soil/land use/climate units. For national SOC monitoring, stratified sampling sites appears to be the most straightforward attribution of SOC values to units with similar soil/land use/climate conditions (i.e. a spatially implicit upscaling approach). Keywords Soil monitoring networks - Soil organic carbon - Modeling - Sampling design

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the title compound, [Li(C14H36N2PSi2)(C5H5N)2], the bulky chelating monoanionic P,P-di-tert-butyl-N-trimethylsilyl-P-(trimethylsilylamino)phosphine imidate ligand and two pyridine ligands bind to Li in a pseudo-tetrahedral arrangement with twofold symmetry. The Li-N [phosphine]distance is 2.048 (5) Å, while the LiP distance is 2.520 (6) Å

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Uncontrolled fibroblast growth factor (FGF) signaling can lead to human diseases, necessitating multiple layers of self-regulatory control mechanisms to keep its activity in check. Herein, we demonstrate that FGF9 and FGF20 ligands undergo a reversible homodimerization, occluding their key receptor binding sites. To test the role of dimerization in ligand autoinhibition, we introduced structure-based mutations into the dimer interfaces of FGF9 and FGF20. The mutations weakened the ability of the ligands to dimerize, effectively increasing the concentrations of monomeric ligands capable of binding and activating their cognate FGF receptor in vitro and in living cells. Interestingly, the monomeric ligands exhibit reduced heparin binding, resulting in their increased radii of heparan sulfate-dependent diffusion and biologic action, as evidenced by the wider dilation area of ex vivo lung cultures in response to implanted mutant FGF9-loaded beads. Hence, our data demonstrate that homodimerization autoregulates FGF9 and FGF20's receptor binding and concentration gradients in the extracellular matrix. Our study is the first to implicate ligand dimerization as an autoregulatory mechanism for growth factor bioactivity and sets the stage for engineering modified FGF9 subfamily ligands, with desired activity for use in both basic and translational research.